The Databases Course

Solution of Exercise No. 5

More SQL - Practical

Question 1

1. select p#
 from shipments
 group by p#
 having count(distinct s#) > count(distinct j#);

2. select h.s#, h.p#, sum(p.weight)
 from shipments h, parts p, suppliers s
 where h.p# = p.p# and h.s# = s.s# and s.city = 'London'
 group by h.s#, h.p#
 having sum(p.weight) > (select 2*avg(weight) from parts);
 As usual, other documented definitions of an average are also acceptable.

3. select count(*) / (count (distinct j.j#) * count(distinct j.j#))
 from shipments s, projects j;
 This solution doesn’t use ‘group by’ and gives a two points bonus. Note that it
 considers the possibility of projects with no parts, multiple shipments of the same
 part to a project, and so on.

4. select distinct h1.s#
 from shipments h1
 where not exists (select distinct h2.s#, p.p#, j.j#
 from shipments h2, parts p, projects j
 where h1.s#=h2.s# and p.p# in ('p1', 'p2', 'p3', 'p5')
 minus
 select * from shipments);

Question 2

create table friends

 (firstname varchar2(20),

 lastname varchar2(20),

 birthday date,

 height numeric(4,2),

 occupation varchar2(20));

insert

 into friends (firstname, lastname, birthday, height, occupation)

 values ('Snow', 'White', '1-may-69', 1.75, 'Princess');

/* Insert nine more friends here using the same syntax. At least one student! */

select *
 from friends

 order by height desc;

update friends

 set (height) = 2

 where height > (select avg(height) from friends);

delete

 from friends

 where occupation = 'Student';

select *

 from friends

 order by lastname, firstname;

drop table friends;

Question 3

1. select distinct a1, …, an
 from S, T
 where a2 = k and exists (select * from T
 where b1 = S.a1 and b2 = c and b3 = S.a3);

2. select distinct a1, …, an
 from S, T
 where a2 = k and a1 = b1 and b2 = c and a3 = b3;

3. No, the answers to (a) and (b) won’t be correct if the ‘distinct’ keyword were removed from the original query. For example, given this database:

S = { (1,1,1), (1,1,1) }

T = { (1,1,1), (1,1,1) }

The original query and the answers to (a) and (b) will return { (1,1,1) } but the original query without the ‘distinct’ keyword will return { (1,1,1), (1,1,1) }.

If we remove the ‘distinct’ keyword from (a) and (b) as well, then the answer to (a) will now be correct. This is because the statement “find x ε Z” is logically equivalent to the statement “find x such that there exists y ε Z and x=y”, and that is all the difference between the original query and (a). The answer to (b) would still be incorrect if we took the ‘distinct’ keyword out of it and as a proof we can look at S,T as defined above. The original query without ‘distinct’ will return { (1,1,1) , (1,1,1) } but (b) without ‘distinct’ will return
{ (1,1,1) , (1,1,1) , (1,1,1) , (1,1,1) }.

4. Select distinct a1, …, an
 from S
 where a2 = k and not exists (select * from T
 where b1=S.a1 and b2=c and b3=S.a3);

5. It is impossible to write the 3(d) query without a subquery. We’ll prove that there is no query of the allowed form that can do it. First, the selected fields must be a1, …, an because these and only these must be the output fields. The S table must be in the ‘from’ clause, and T also has to be in the ‘from’, otherwise T can have no effect on this query (while obviously it does). Table aliases do not change the calculation itself and can therefore be ignored.
Basic ’where’ clauses cannot express the ‘in’ predicate: Comparing to a constant is obviously useless, and comparing to an attribute whose data must be in the current tuple also can’t express ‘in’, since ‘in’ demands parallel comparison to data from several tuples (a table), and a basic ‘where’ predicate can only use data from one (the current) tuple. Composite ‘where’ conditions cannot access data from other tuples as well, since they are just combinations of basic conditions and do not refer explicitly to data.

