The Databases Course

Solution of Exercise No. 5

More SQL and Design Theory

Question 1

a. select rid
          from events
          group by rid
          having count(sid) >=all (select count(sid) from events group by rid);
b. select count(distinct rid)
          from events e, animals a
          where e.aid = a.aid and a.species = 'Whale'
          group by aid, sid
          having count(*) > 2;
c. select avg(e.year - a.birthyear)
         from events e, animals a
         where e.aid = a.aid;
d.  select avg(e.year - a.birthyear)
          from events e, animals a
          where e.aid = a.aid and not exists
                    (select * from events
                     where aid = a.aid and rid = e.rid
                     and (sid < e.sid or year < e.year);
e. select distinct aid
          from animals a
          where not exists (select distinct a2.aid, e2.rid
                                             from animals a2, events e2
                                             where e2.year = 1994 and a2.aid = a.aid
                                       minus
                                       select distinct aid, rid from events e3);


Question 2

1. Given a query of the following form:

select a1,…,an from t1,…,tm
      

where C1 and ai in (select x from q1,…,qn where C2);

In which C1 and C2 are some arbitrary boolean conditions, rewrite as:

select a1,…,an from t1,…,tm

where C1 and exists (select a from q1,…,qn where C2 and ai = x);

     For example, the following query returns all animals that are parents:
            In: select aid from animals where aid in (select parent from children);
            Exists: select aid from animals where exists
                        (select parent from children where aid = parent);

2. Given a query of the following form:

select a1,…,an from t1,…,tm
      

where C1 and ai >=all (select x from q1,…,qn where C2);

      It can be rewritten as:

select a1,…,an from t1,…,tm
      

where C1 and not exists (select x from q1,…,qn where C2 and ai < y);

      In the same spirit: "x <all s" translates to "not exists y in s where not x < y"
                                    "x >any s" translates to "exists y in s where x > y"
                                    "x <>all s" translates to "not exists y in s where not x <> y"

                                    etc.
            

Question 3

Given < R, S, F > the following algorithm finds an elementary (=simple) key of R. Its runtime is O( |F| ( |S| ). See proof of correctness and runtime at last year's question 3 of exercise 8.

find-key(R, S, F)


K := S


for all Ai ( K do



if  [K – Ai ( Ai] ( F+  then  K := K – Ai


return K

Question 4

Proof using the definition of functional dependencies:

1. The dependency X ( A1A2…An. means that for every two lines in the relation have the same value for X, they must also have the same value for each Ai. But this by definition also means that for each Ai, X ( Ai.

2. If for all i,j Xi ( Xj then in particular Xi ( X(i+1) mod n for all i. For the other direction, we can prove Xi ( Xj for any i,j by transitivity: Because of Xi ( Xi+1, for every two lines equal in Xi we know that they are equal in Xi+1 as well. But because of Xi+1 ( Xi+2, we know that they are equal in Xi+2 as well, and in the same manner we know that they are equal in Xi+3, Xi+4, …, X1, …, Xi-1, and actually every attribute in the relation – Xj in particular.

Proof using Armstrong's axioms:

1. Assume that X ( A1A2…An. Denote Y := A1A2…An, then X ( Y. For any Ai we have ( Y therefore by Axiom 1, Y ( Ai. Then by Axiom 3 (transitivity) X ( Ai.
Assume that for all i, X ( Ai. This direction will follow trivially from the following lemma: if X ( Y and X ( Z then X ( YZ. By axiom 2, X ( A therefore XX ( XA but XX is X ( X = X therefore X ( XA. By axiom 2 again from X ( B we have XA ( BA or in other words XA ( AB, and then by axiom 3 we compose X ( XA and XA ( AB into X ( AB.

2. If for all i,j Xi ( Xj then in particular Xi ( X(i+1) mod n for all i. For the other direction, we can prove Xi ( Xj for any i,j again by transitivity, which is axiom 3. From Xi ( Xi+1 and Xi+1 ( Xi+2 we have X ( Xi+2. From that and Xi+2 ( Xi+3 we have X ( Xi+3, and we can go on to prove X ( Xj for any j=1..n.

Question 5

1. First we write F so that each derived part of a dependency is a single field:
F = { A  F, AC  D, AF  B, E  A, E ( F, EC  F, EFB  D}.
First we have to try to remove redundant fields. In 'AC ( D', neither A nor C are redundant because neither A ( D nor C ( D can be proved from F. In 'AF ( B', F can be removed because F |- A ( D (combine A ( F and AF ( B). We can also remove C from 'EC ( F' because F |- E ( F (combine E ( A and A ( F). And from 'EFB ( D' we can remove both F and B, because F |- E ( D (combine E ( A, A ( F, A ( B and EFB ( D to prove this). This are all the fields that can be removed, so at the end of this stage we have:
F' = { A ( F, AC ( D, A ( B, E ( A, E ( F, E ( F, E ( D }
Now we move to remove redundant dependencies, by trying and prove each of the dependencies using only the others. A ( F must stay, AC ( D must stay, A ( B must stay, E ( A must stay, E ( F is redundant (because of E ( A and A ( F), and E ( D must stay. So the final answer (in compact form) is:
F' = { A ( BF, AC ( D, E ( AD }
2. Because of graphics constraints, I won't actually draw a table. We start by assigning X+ = {A,C}. Going over the A column we get X+ = {A,C,B,F}. Going over the C column we get X+ = {A,C,B,F,D}. Going over the B, F and D columns now adds nothing more to the closure (since these fields don't appear on the left side of any dependency), therefore the final answer is {A,B,C,D,F}.

3. First, C and E never appear on the right side of a dependency, therefore they must be part of every simple key. If we compute {CE}+ we get {ECADBF}, which means that EC is a simple key itself. Since every key that is a strict subset of CE cannot be a key at all, and every key that is a strict superset of CE cannot be a simple key, then we conclude that CE is the only simple key.

