The Databases Course

Solution of Exercise No. 7

Design Theory

Question 1

1. We’ll use the algorithm taught in class. All the dependencies of F already have atomic derivatives. There are no redundant attributes. There is one redundant dependency to remove: DE ( A can be derived from D ( B  |-  DE ( BE,
BE ( A  |-  DE ( A. Therefore G = { AB ( C, BE ( A, C ( D, D ( B } is a non-redundant cover of F.

2. The E field is never derived and therefore must appear in every key. It's not by itself a key, so we try to add fields to it to create one: {EB} is a key, {EC} is a key, and {ED} is a key. {EA} is not a key, and if we add any other field to it (B, C or D) we'll reach a non-simple key, since EB,EC and ED are already simple keys.

3. AB ( C is transitive (since AB is not a key), BE ( A is full (since BE is a key), C ( D is partial (since C is part of a key EC), and D ( B is also partial.

4. We'll use the normalizing algorithm taught in class. We already created a non-redundant cover G of the original F, and there are no dependencies we can join (i.e. combine A(B, A(C into A(BC). We therefore create the four sub-schemes: ( = {ABC, ABE, CD, DB}. One of the sub-schemes, namely ABE, already contains a key of the original scheme, therefore we don't have to add one. There are no duplicates in (, therefore the algorithm is done. It is 3NF, lossless and dependency preserving because these properties were proved for any output of the algorithm we used.

5. The projected dependencies of ABC are {AB(C, C(B}, of ABE are {BE(A}, of CD are {C(D}, and of BD are {D(B}.

Question 2

1. The projected dep. of AB are {B(A}, of AC are {C(A} and of BD are {D(B}.

2. No, the dependency D(C is not preserved. We'll prove this by testing it using the algorithm taught in class:
X0 = { D }
X1 = X0 ({ X0 ( BD)+F ( BD } = D ( (ABCD ( BD) = { BD }
X2 = X1 ({ X1 ( AB)+F ( AB } = BD ( (AB ( AB) = { ABD }
X3 = X2 ({ X2 ( AC)+F ( AC } = ABD ( (A ( BD) = { ABD }
Further iterations cannot change X3, but C ( X3, so D ( C is not preserved by (.

3. The tables algorithm tests a decomposition ( for being lossless.
Table initialization:


A
B
C
D

AB
a1
a2
b13
b14

AC
a1
b22
a3
b24

BD
b31
a2
b33
a4

     By activating B ( A we assign v31 = v21 = a1:


A
B
C
D

AB
a1
a2
b13
b14

AC
a1
b22
a3
b24

BD
a1
a2
b33
a4

 Now there is no possible activation of the dependencies that will change the table, since B ( A and C ( A can't change the A column any more, and the only two other dependencies are D ( B, D ( C but there are no two lines that are identical in D. Since there is no line that contains only ‘ai’, ( is not lossless.

Question 3

1. A relation with two fields, say A and B, can only have four sets of non-redundant dependency sets: (, {A(B}, {B(A}, {A(B,B(A}. In all of these alternatives, for every dependency X(Y, X is a key of the relation, so BCNF is never violated.

2. If R is in BCNF, then it is necessarily in 3NF as well by the definition of BCNF ("a relation is in BCNF if it's in 3NF and has no partial or transitive dependencies at all"). As for the other direction of the proof, assume by negation that R is in 3NF and not in BCNF. This means that there exists a dependency X(Y in R in which X is not a key, but Y is a primary field (part of a simple key). So Y is part of the single simple key YZ of the relation, where Z is any set of fields that does not include Y or X (if it would, the key would not be simple since Z would be a key by itself). Now consider XZ – it is also a key, which does not contain Y. Either it or a subset of it must be a simple key, but this is in contradiction to the fact that YZ is the only simple key of the relation. We reached a contradiction, therefore every such relation in 3NF must be in BCNF as well.

3. Assume by negation that R is in 3NF and not in BCNF. This means that there exists a dependency X ( Y in which X is not a key of R, and Y is a primary field. But if Y is a primary field, that is part of a simple key, and every simple key has exactly one field, then Y itself must be a simple key of R. This means that X is also a key of R, since for any field Z, we have X(Y and Y(Z and hence X(Z. This is in contradiction to the initial assumption that X is not a key of R.

Question 4

1.  A((B holds because it is easy to see that A(B holds.

2.  BC((A holds because it is a trivial multi-valued dependency.

3.   B((C doesn't hold. Consider B=2 with A=1, and get this set of B's: {3,4}.
In contrast, consider B=2 with A=4, and get this different set of B's: {3,1}.

Question 5

1.  R cannot be in BCNF. In order to be in BCNF, every dependency X(Y must satisfy that X is a key; because of B(D, this means that B must be a key of R. This means that adding B(C won't work, since B won't be a key then. On the other hand, attempting to make B a key by adding one more dependency, for example by adding B(A, makes the dependency AB(C redundant. This happens since if B(A then AB(C can be truncated to B(C, which contradicts the condition that F is non-redundant.

2.  This question is exactly question 3 of the course's test in 1997/8, moed alef. The solution of the entire test is on the course's homepage. In short, the solution says that only B ( C and AB ( C are possible.

Question 6

1.  The algorithm is lossless because every step of it, in which XYZ is broken into XY and XZ, is lossless. This is because the intersection of these two sub-schemes is X, and we know that X(Y (this is how we chose to decompose!). Since every atomic decomposition is lossless, then (as taught in class) the entire decomposition of the original relation to many sub-schemes is lossless as well.
The algorithm always returns a decomposition in BCNF, that is one in which all the sub-schemes are in BCNF, trivially because this is the stopping condition of the algorithm: It only ends when all of the sub-schemes are in BCNF.

2.  Consider S = (ABCDE), F = { A(BC, B(D }. The algorithm sees that A(BC violates BCNF and decomposes to { ABC, ADE }. Both sub-schemes are now in BCNF, so this is the final output. But the dependency B(D is not kept within this decomposition, as the dependency preservation algorithm shows:

X0 = { B }
X1 = X0 ({ X0 ( ABC)+F ( ABC } = B ( (BD ( ABC) = { B }
X2 = X1 ({ X1 ( ADE)+F ( ADE } = B ( (( ( ADE) = { B }

