
 

This is an updated version of an article that appeared in the September and November-
December 1997 issues of the °C++ Report. 

Exception-Safe Generic Containers  ¤   Sutter, P1   

by °Herb Sutter  ¤   Sutter, P2   

Exception handling and generic programming are two of C++'s most powerful
features. Both, however, require exceptional care, and writing an efficient reusable
generic container is nearly as difficult as writing exception-safe code.  ¤   Sutter, P3   

This article tackles both of these major features at once, by examining how to write
exception-safe (works properly in the presence of exceptions) and exception-neutral
(propagates all exceptions to the caller) generic containers. That's easy enough to say,
but it's no mean feat. If you have any doubts on that score, see Tom Cargill's excellent
article, Exception Handling: A False Sense of Security.  ¤   Sutter, P4   

This article begins where Cargill's left off, namely by presenting an exception-neutral
version of the Stack template he critiques. In the end, we'll significantly improve the
Stack container by reducing the requirements on T, the contained type, and show
advanced techniques for managing resources exception-safely. Along the way we'll
find the answers to questions like the following:  ¤   Sutter, P5   

What are the different "levels" of exception safety?  ¤   Sutter, P6   

Can or should generic containers be fully exception-neutral?  ¤   Sutter, P7   

Are the standard library containers exception-safe or -neutral?  ¤   Sutter, P8   

Does exception safety affect the design of your container's public interface?  ¤ 

Should generic containers use exception specifications?  ¤   Sutter, P10   

The Stack<> Container  ¤   Sutter, P11   

Here is the declaration of the Stack template, substantially the same as in Cargill's
article. Our mission: to make Stack exception-neutral. That is, Stack objects should
always be in a correct and consistent state regardless of any exceptions that might be
thrown in the course of executing Stack's member functions, and if any exceptions
are thrown they should be propagated seamlessly through to the caller, who can deal
with them as he pleases because he knows the context of T and we don't.   

template <class T> class Stack {
public:
  Stack();
  ~Stack();
  Stack(const Stack&);
  Stack& operator=(const Stack&);
  size_t Size() const;
  void   Push(const T&);
  T      Pop();               // if empty, throws exception
private:
  T*     v_;                  // ptr to a memory area big
  size_t vsize_;              //  enough for 'vsize_' T's
  size_t vused_;              // # of T's actually in use
};

Before reading on, stop and think about this container and consider: What are the
exception-safety issues? How can this class be made exception-neutral, so that any



exceptions are propagated to the caller without causing integrity problems in a Stack
object?  ¤   Sutter, P13   

Default Construction  ¤   Sutter, P14   

Right away, we can see that Stack is going to have to manage dynamic memory
resources. Clearly one key is going to be avoiding leaks even in the presence of
exceptions thrown by T operations and standard memory allocations. For now, we'll
manage these memory resources within each Stack member function. Later, we'll
improve on this by using a private base class to encapsulate resource ownership.
 ¤   Sutter, P15   

First, consider one possible default constructor:  ¤   Sutter, P16   
template<class T>
Stack<T>::Stack()
  : v_(0),
  vsize_(10),
  vused_(0)           // nothing used yet
{
  v_ = new T[vsize_]; // initial allocation
}

Is this constructor exception-safe? To find out, consider what might throw. In short,
the answer is: "Any function." So the first step is to analyze this code and determine
what functions will actually be called, including both free functions and constructors,
destructors, operators, and other member functions.  ¤   Sutter, P17   

This Stack constructor first sets vsize_ to 10, then attempts to allocate some initial
memory using new T[vsize_]. The latter first tries to call operator new[] (either the
default operator new[] or one provided by T) to allocate the memory, then tries to
call T::T a total of vsize_ times. There are two operations that might fail: first, the
memory allocation itself, in which case operator new[] will throw a bad_alloc
exception; and second, T's default constructor, which might throw anything at all, and
in which case any objects that were constructed are destroyed and the allocated
memory is automatically guaranteed to be deallocated via operator delete[].   Sutter,  
P18 

Hence the above function is fully exception-safe, and we can move on to the next ...   
... what? Why is it exception-safe, you ask? All right, let's examine it in a little more
detail:  ¤   Sutter, P20   

1.We're exception-neutral. We don't catch anything, so if the new throws then
the exception is correctly propagated up to our caller as required.  ¤   Sutter,  
P21 

2.We don't leak. If the operator new[] allocation call exited by throwing a
bad_alloc exception, then no memory was allocated to begin with so there
can't be a leak. If one of the T constructors threw, then any T objects that were
fully constructed were properly destroyed and finally operator delete[] was
automatically called to release the memory. That makes us leak-proof, as
advertised. (I'm ignoring for now the possibility that one of the T destructor
calls might throw during the cleanup, which would call terminate() and
simply kill the program altogether and leave events well out of your control
anyway. See below for more information on Destructors That Throw and Why
They're Evil.)  ¤   Sutter, P22   



3.We're in a consistent state whether any part of the new throws or not. Now,
you might think that if the new throws, then vsize_ has already been set to 10
when in fact nothing was successfully allocated. Isn't that inconsistent? Not
really, because it's irrelevant. Remember, if the new throws we propagate the
exception out of our own constructor, right? And, by definition, "exiting a
constructor by means of an exception" means our Stack proto-object never
actually got to become a completely constructed object at all, its lifetime never
started, and hence its state is meaningless because the object never existed. It
doesn't matter what the memory that briefly held vsize_ was set to, any more
than it matters what the memory was set to after we leave an object's
destructor. All that's left is raw memory, smoke and ashes.  ¤   Sutter, P23   

All right, I'll admit it... I put the new in the constructor body purely to open the door
for that last #3 discussion. What I'd actually prefer to write is:  ¤   Sutter, P24   

template<class T>
Stack<T>::Stack()
  : v_(new T[10]),  // default allocation
    vsize_(10),
    vused_(0)       // nothing used yet
{ }

Both versions are practically equivalent. I prefer the latter because it follows the usual
good practice of initializing members in initializer lists whenever possible. 

Destruction  ¤   Sutter, P26   

The destructor looks a lot easier, once we make a (greatly) simplifying assumption: 
template<class T>
Stack<T>::~Stack() {
  delete[] v_;      // this can't throw  
}

Why can't the delete[] call throw? Recall that this invokes T::~T for each object in
the array, then calls operator delete[] to deallocate the memory. Now, we know
that the deallocation by operator delete[] may never throw, because its signature is
always one of the following:  ¤   Sutter, P28   

void operator delete[]( void* ) throw();
void operator delete[]( void*, size_t ) throw();

Strictly speaking, this doesn't prevent someone from providing an overloaded
operator delete[] that does throw, but any such overload would violate this clear
intent and should be considered defective. Hence the only thing that could possibly
throw is one of the T::~T calls, and we're arbitrarily going to have Stack require that
T::~T may not throw. Why? To make a long story short, we just can't implement the
Stack destructor with complete exception safety if T::~T can throw, that's why.
However, requiring that T::~T may not throw isn't particularly onerous, because there
are plenty of other reasons why destructors should never be allowed to throw at all.
(Frankly, you won't go far wrong if you just habitually write throw() after the
declaration of every destructor you ever write. Even if exception specifications cause
expensive checks under your current compiler, at least write all your destructors as
though they were specified as throw()... that is, never allow exceptions to leave
destructors.) Any class whose destructor can throw is likely to cause you all sorts of
other problems anyway sooner or later, and you can't even reliably new[] or delete[]
an array of them. More on that later.  ¤   Sutter, P29   

Copy Construction and Copy Assignment  ¤   Sutter, P30   



The next few functions will use a common helper function, NewCopy, to manage
allocating and growing memory. NewCopy takes a pointer to (src) and size of
(srcsize) an existing T buffer, and returns a pointer to a new and possibly larger copy
of the buffer, passing ownership of the new buffer to the caller. If exceptions are
encountered, NewCopy correctly releases all temporary resources and propagates the
exception in such a way that nothing is leaked.  ¤   Sutter, P31   

template<class T>
T* NewCopy( const T* src,
    size_t   srcsize,
    size_t   destsize ) {
  assert( destsize >= srcsize );
  T* dest = new T[destsize];
  try {
    copy( src, src+srcsize, dest ); // copy is part of the STL;
  } catch(...) {
    delete[] dest;                    // this can't throw
    throw;                             // rethrow original
exception
  }
  return dest;
}

Let's analyze this one step at a time:  ¤   Sutter, P32   

1.In the new statement, the allocation might throw bad_alloc or the T::T's may
throw anything. In either case, nothing is allocated and we simply allow the
exception to propagate. This is leak-free and exception-neutral.  ¤   Sutter, P33   

2.Next, we assign all the existing values using copy, and copy invokes
T::operator=. If any of the assignments fail, we catch the exception, free the
allocated memory, and rethrow the original exception. This is again both leak-
free and exception-neutral. However, there's an important subtlety here:
T::operator= must guarantee that, if it does throw, then the assigned-to T
object must be unchanged. (Later, I will show an improved version of Stack
which does not rely on T::operator=.)  ¤   Sutter, P34   

3.If the allocation and copy both succeeded, then we return the pointer to the
new buffer and relinquish ownership (that is, the caller is responsible for the
buffer from here on out). The return simply copies the pointer value, which
cannot throw.  ¤   Sutter, P35   

With NewCopy in hand, the Stack copy constructor is easy to write:  ¤   Sutter, P36   

template<class T>
Stack<T>::Stack( const Stack<T>& other )
  : v_(NewCopy( other.v_,
      other.vsize_,
      other.vsize_ )),
    vsize_(other.vsize_),
    vused_(other.vused_)
{ }

The only possible exception is from NewCopy, which manages its own resources.
Next, we tackle copy assignment:  ¤   Sutter, P37   

template<class T>
Stack<T>&
Stack<T>::operator=( const Stack<T>& other ) {
  if( this != &other ) {
    T* v_new = NewCopy( other.v_,
      other.vsize_,
  other.vsize_ );



    delete[] v_;  // this can't throw
    v_ = v_new;    // take ownership
    vsize_ = other.vsize_;
    vused_ = other.vused_;
  }
  return *this;    // safe, no copy involved
}

Again, after the routine weak guard against self-assignment, only the NewCopy call
might throw; if it does, we correctly propagate that exception without affecting the
Stack object's state. To the caller, if the assignment throws then the state is
unchanged, and if the assignment doesn't throw then the assignment and all of its side
effects are successful and complete.  ¤   Sutter, P38   

Size(), Push(), and Pop()  ¤   Sutter, P39   

The easiest of all Stack's members to implement safely is Size, because all it does is
copy a built-in which can never throw:  ¤   Sutter, P40   

template<class T>
size_t Stack<T>::Size() const {
  return vused_;  // safe, builtins don't throw
}

However, with Push we need to apply our now-usual duty of care:  ¤   Sutter, P41   
template<class T>
void Stack<T>::Push( const T& t ) {
  if( vused_ == vsize_ )             // grow if necessary
  {                                  // by some grow factor
    size_t vsize_new = vsize_*2+1;
    T* v_new = NewCopy( v_, vsize_, vsize_new );
    delete[] v_;                     // this can't throw
    v_ = v_new;                      // take ownership
    vsize_ = vsize_new;
  }
  v_[vused_] = t;
  ++vused_;
}

If we have no more space, we first pick a new size for the buffer and make a larger
copy using NewCopy. Again, if NewCopy throws then our own Stack's state is
unchanged and the exception propagates through cleanly. Deleting the original buffer
and taking ownership of the new one involves only operations that are known not to
throw, so the entire if block is exception-safe.  ¤   Sutter, P42   

After any required grow operation, we attempt to copy the new value before
incrementing our vused_ count. This way, if the assignment throws, the increment is
not performed and our Stack's state is unchanged. If the assignment succeeds, the
Stack's state is changed to recognize the presence of the new value, and all is well. 

Only one function left... that wasn't so hard, was it? Well, don't get too happy just yet,
because it turns out that Pop is the most problematic of these functions to write with
complete exception safety. Our initial attempt might look something like this: 

template<class T>
T Stack<T>::Pop() {
  if( vused_ == 0) {
    throw "pop from empty stack";
  } else {
    T result = v_[vused_-1];
    --vused_;
    return result;
  }
}



If the stack is empty, we throw an appropriate exception. Otherwise, we create a copy
of the T object to be returned, update our state, and return the T object. If the initial
copy from v_[vused_-1] fails, the exception is propagated and the state of the Stack
is unchanged, which is what we want. If the initial copy succeeds, our state is updated
and the Stack is in its new consistent state, which is also what we want.  ¤   Sutter, P45  

So this works, right? Well, kind of. There is a subtle flaw here that's completely
outside the purview of Stack::Pop. Consider the following client code:  ¤   Sutter, P46  

int i(s.Pop());
int j;
j = s.Pop();

Note that above we talked about "the initial copy" (from v_[vused_-1]). That's
because there is another copy to worry about in either of the above cases, namely the
copy of the returned temporary into the destination. (For you experienced readers, yes,
it's actually "zero or one copies" because the compiler is free to optimize away the
second copy if the return value optimization applies. The point is that there can be a
copy, so you have to be ready for it.) If that copy construction or copy assignment
fails, then the Stack has completed its side effect (the top element has been popped
off) but the popped value is now lost forever because it never reached its destination
(oops). This is bad news. In effect, it means that any version of Pop that is written to
return a temporary like this cannot be made completely exception-safe, because even
though the function's implementation itself may look technically exception-safe, it
forces clients of Stack to write exception-unsafe code. More generally, mutator
functions should not return T objects by value.  ¤   Sutter, P47   

The bottom line — and it's significant — is this: Exception safety affects your class's
design! In other words, you must design for exception safety from the outset, and
exception safety is never "just an implementation detail." One alternative is to
respecify Pop as follows:  ¤   Sutter, P48   

template<class T>
void Stack<T>::Pop( T& result ) {
  if( vused_ == 0) {
    throw "pop from empty stack";
  } else {
    result = v_[vused_-1];
    --vused_;
  }
}

A potentially tempting alternative is to simply change the original version to return T&
instead of T (this would be a reference to the popped T object, since for the time being
the popped object happens to still physically exist in your internal representation) and
then the caller could still write exception-safe code. But this business of returning
references to "I no longer consider it there" resources is just purely evil. If you change
your implementation in the future, this may no longer be possible! Don't go there.
 ¤   Sutter, P49   

The modified Pop ensures that the Stack's state is not changed unless the copy safely
arrives in the caller's hands. Another option (and preferable, in my opinion) is to
separate the functions of "querying the topmost value" and "popping the topmost
value off the stack." We do this by having one function for each:  ¤   Sutter, P50   

template<class T>
T& Stack<T>::Top() {
  if( vused_ == 0) {
    throw "empty stack";
  }
  return v_[vused_-1];



}
template<class T>
void Stack<T>::Pop() {
  if( vused_ == 0) {
    throw "pop from empty stack";
  } else {
    --vused_;
  }
}

Incidentally, have you ever grumbled at the way the standard library containers' pop
functions (e.g., list::pop_back, stack::pop, etc.) don't return the popped value?
Well, here's one reason to do this: It avoids weakening exception safety. In fact,
you've probably noticed that the above separated Top and Pop now match the
signatures of the top and pop members of the standard library's stack<> adapter.
That's no coincidence! We're actually only two public member functions away from
the stack<> adapter's full public interface, namely:  ¤   Sutter, P51   

template<class T>
const T& Stack<T>::Top() const {
  if( vused_ == 0) {
    throw "empty stack";
  } else {
    return v_[vused_-1];
  }
}

to provide Top for const Stack objects, and:  ¤   Sutter, P52   
template<class T>
  bool Stack<T>::Empty() const {
  return( vused_ == 0 );
}

Of course, the standard stack<> is actually a container adapter that's implemented in
terms of another container, but the public interface is the same and the rest is just an
implementation detail.  ¤   Sutter, P53   

Levels of Safety: The Basic and Strong Guarantees  ¤   Sutter,  
P54 

Just as there's more than one way to skin a cat (somehow I have a feeling I'm going to
get enraged email from animal lovers), there's more than one way to write exception-
safe code. In fact, there are two main alternatives we can choose from when it comes
to guaranteeing exception safety. These guarantees were first set out in this form by
Dave Abrahams:  ¤   Sutter, P55   

1.Basic Guarantee: Even in the presence of T or other exceptions, Stack objects
don't leak resources. Note that this also implies that the container will be
destructible and usable even if an exception is thrown while performing some
container operation. However, if an exception is thrown, the container will be
in a consistent but not necessarily predictable state. Containers that support the
basic guarantee can work safely in some settings. (This is similar to every
Stack member function leaving the object in what Jack Reeves terms a good
— but never a bad or an undefined — state. For details, consult Reeves'
article, Coping with Exceptions.)  ¤   Sutter, P56   

2.Strong Guarantee: If an operation terminates because of an exception,
program state will remain unchanged. This always implies commit-or-
rollback semantics, including that no references or iterators into the container



be invalidated if an operation fails. For example, if a Stack client calls Top
and then attempts a Push which fails because of an exception, then the state of
the Stack object must be unchanged, and the reference returned from the prior
call to Top must still be valid. For more information on these guarantees, see
Dave Abrahams' documentation of the °SGI exception-safe standard library
adaptation.  ¤   Sutter, P57   

Probably the most interesting point here is that when you implement the basic
guarantee, the strong guarantee often comes along for free. (Note that I said "often,"
not "always." In the standard library, for example, vector is a well-known
counterexample where satisfying the basic guarantee does not cause the strong
guarantee to come along for free.) For example, in our Stack implementation, almost
everything we did was needed to satisfy just the basic guarantee... and what's
presented above very nearly satisfies the strong guarantee, with little or no extra work.
Not half bad, considering all the trouble we went to.  ¤   Sutter, P58   

(There is one subtle way in which this version of Stack still falls short of the strong
guarantee: If Push() is called and has to grow its internal buffer, but then its final v_
[vused_] = t; assignment throws, the Stack is still in a consistent state and all, but
its internal memory buffer has moved — which invalidates any previously valid
references returned from Top(). This last flaw in Stack::Push() can be fixed fairly
easily by moving some code and adding a try block. For a better solution, however,
see the Stack presented below — that Stack does not have this problem, and it does
satisfy the strong commit-or-rollback guarantee.)  ¤   Sutter, P59   

Points to Ponder  ¤   Sutter, P60   

Note that we've been able to implement Stack to be not only exception-safe but fully
exception-neutral, yet we've used only a single try/catch. As we'll see below, using
better encapsulation techniques can get rid of even this try block. That means we can
write a fully exception-safe and exception-neutral generic container without using try
or catch... which really is pretty cool.  ¤   Sutter, P61   

As originally defined, Stack requires its instantiation type to have a:  ¤   Sutter, P62   

default constructor (to construct the v_ buffers)  ¤   Sutter, P63   

copy constructor (if Pop returns by value)  ¤   Sutter, P64   

nonthrowing destructor (to be able to guarantee exception safety)  ¤ 

exception-safe copy assignment (to set the values in v_, and if the copy
assignment throws then it must guarantee that the target object is unchanged;
note that this is the only T member function which must be exception-safe in
order for our Stack to be exception-safe)  ¤   Sutter, P66   

Next, we'll see how to reduce even these requirements without compromising
exception safety, and along the way we'll get an even more detailed look at the
standard operation of the statement delete[] x;.  ¤   Sutter, P67   

Delving Deeper  ¤   Sutter, P68   

Now I'll delve a little deeper into the Stack example, and write not just one but two
new-and-improved versions of the template. Not only is it possible to write exception-
safe generic containers, but between the last approach and this one I'll have



demonstrated no less than three different complete solutions to the exception-safe
Stack problem.  ¤   Sutter, P69   

Along the way, I'll also answer several more interesting questions:  ¤   Sutter, P70   

How can we use more advanced techniques to simplify the way we manage
resources, and get rid of the last try/catch into the bargain?  ¤   Sutter, P71   

How can we improve Stack by reducing the requirements on T, the contained
type?  ¤   Sutter, P72   

Should generic containers use exception specifications?  ¤   Sutter, P73   

What do new[] and delete[] really do?  ¤   Sutter, P74   

The answer to the last may be quite different than you expect. Writing exception-safe
containers in C++ isn't rocket science; it just requires significant care and a good
understanding of how the language works. In particular, it helps to develop a habit of
eyeing with mild suspicion anything that might turn out to be a function call —
including user-defined operators, user-defined conversions, and silent temporary
objects among the more subtle culprits — because any function call might throw
(except for functions declared with an exception specification of throw(), or certain
functions in the standard library that are documented to never throw).  ¤   Sutter, P75   

An Improved Stack  ¤   Sutter, P76   

One way to greatly simplify an exception-safe container like Stack is to use better
encapsulation. Specifically, we'd like to encapsulate the basic memory management
work. Most of the care we had to take while writing our original exception-safe Stack
was needed just to get the basic memory allocation right, so let's introduce a simple
helper class to put all of that work in one place:  ¤   Sutter, P77   

template <class T> class StackImpl {
/*????*/:
  StackImpl(size_t size=0)
  : v_( static_cast<T*>               
    ( size == 0
    ? 0
    : ::operator new(sizeof(T)*size) ) ),
    vsize_(size),
    vused_(0)
  { }
  ~StackImpl() {
    destroy( v_, v_+vused_ );         // this can't throw
    ::operator delete( v_ );
  }
  void Swap(StackImpl& other) throw() {
    swap(v_, other.v_);
    swap(vsize_, other.vsize_);
    swap(vused_, other.vused_);
  }
  T*     v_;                     // ptr to a memory area big
  size_t vsize_;                 //  enough for `vsize_' T's
  size_t vused_;                 // # of T's actually in use
};

There's nothing magical going on here: StackImpl is responsible for simple raw
memory management and final cleanup, so any class that uses it won't have to worry
about those details. We won't spend much time analyzing why this class is fully
exception-safe (works properly in the presence of exceptions) and exception- neutral
(propagates all exceptions to the caller), because the reasons are pretty much the same



as those we dissected in detail above.  ¤   Sutter, P78   

Note that StackImpl has all of the original Stack's data members, so that we've
essentially moved the original Stack's representation entirely into StackImpl.
StackImpl also has a helper function named Swap, which exchanges the guts of our
StackImpl object with those of another StackImpl.  ¤   Sutter, P79   

Before reading on, stop and think about this class and consider: What access specifier
would you write in place of the comment "/*????*/"? And how exactly might you
use a class like this to simplify Stack? (Hint: The name StackImpl itself hints at
some kind of "implemented-in-terms-of" relationship, and there are two main ways to
write that kind of relationship in C++).  ¤   Sutter, P80  

Technique 1: Private Base Class  ¤   Sutter, P81   

The missing /*????*/ access specifier must be either protected or public. (If it
were private, no one could use the class.) First, consider what happens if we make it
protected.  ¤   Sutter, P82   

Using protected means that StackImpl is intended to be used as a private base class.
So Stack will be "implemented in terms of" StackImpl, which is what private
inheritance means, and we have a clear division of responsibilities: the StackImpl
base class will take care of managing the memory buffer and destroying all remaining
T objects during Stack destruction, while the Stack derived class will take care of
constructing all T objects within the raw memory. The raw memory management takes
place pretty much entirely outside Stack itself, because for example the initial
allocation must fully succeed before any Stack constructor can even be called. So far,
so good.  ¤   Sutter, P83   

Using the private base class method, our Stack class will look something like this (the
code is shown inlined for brevity):  ¤   Sutter, P84   

template <class T>
class Stack : private StackImpl<T> {
public:
  Stack(size_t size=0) : StackImpl<T>(size) { }

Stack's default constructor simply calls the default constructor of StackImpl, which
just sets the stack's state to empty and optionally performs an initial allocation. The
only operation here which might throw is the new done in StackImpl's constructor,
and that's unimportant when considering Stack's own exception safety; if it does
happen, we won't enter the Stack constructor and there will never have been a Stack
object at all, so any initial allocation failures in the base class don't affect Stack. 

Note that we slightly changed Stack's original constructor interface to allow a starting
'hint' at the amount of memory to allocate. We'll make use of this in a minute when we
write the Push function.  ¤   Sutter, P86   

We don't need to provide a Stack destructor. The default compiler-generated Stack
destructor is fine, because it just calls the StackImpl destructor to destroy any objects
that were constructed and actually free the memory.  ¤   Sutter, P87   

Stack(const Stack& other)
  : StackImpl<T>(other.vused_)
{
  while( vused_ < other.vused_ ) {
  construct( v_+vused_,                // see Sidebar 1 for
         other.v_[vused_] );           // info on construct
  ++vused_;



  }
}

Copy construction now becomes efficient and elegant. The worst that can happen here
is that a T constructor could fail, in which case the StackImpl destructor will correctly
destroy exactly as many objects as were successfully created and then deallocate the
raw memory. One big benefit derived from StackImpl is that we could add as many
more constructors as we want without putting cleanup code in each one. 

Stack& operator=(const Stack& other) {
  Stack temp(other);      // does all the work
  Swap( temp );           // this can't throw — see Sidebar 1
                          // for info on swap
  return *this;
}

Copy assignment is even more elegant, if a little subtle: we construct a temporary
object from other, then call Swap to swap our own guts with temp's, and finally when
temp goes out of scope and destroys itself it automatically cleans up our old guts in
the process, leaving us with the new state. Also, when operator= is made exception-
safe like this, a side effect is that it usually also automatically handles self-assignment
(e.g., Stack s; s = s;) correctly without further work. (Because self- assignment is
exceedingly rare, I omitted the traditional "if( this != &other )" test which has
its own subtle problems. See °Guru of the Week #11 for all the gory details.)  ¤ 

Note that because all the real work is done while constructing temp, any exceptions
that might be thrown (either by memory allocation or T copy construction) can't affect
the state of our object. Also, there won't be any memory leaks or other problems from
the temp object because the Stack copy constructor is already fully exception-neutral.
Once all the work is done, we simply swap our object's internal representation with
temp's, which cannot throw (because Swap has a throw() exception specification, and
because it does nothing but copy built-ins), and we're done.  ¤   Sutter, P90   

Note how much more elegant this is than the exception-safe copy assignment we
implemented earlier! This version also requires much less care to ensure that it's been
made properly exception-safe.  ¤   Sutter, P91   

size_t Count() const {
  return vused_;
}

Yes, Count is still the easiest member function to write.  ¤   Sutter, P92   
void Push( const T& t ) {
  if( vused_ == vsize_ ) { // grow if necessary
    Stack temp( vsize_*2+1 );
    while( temp.Count() < vused_ ) {
      temp.Push( v_[temp.Count()] );
    }
    temp.Push( t );
    Swap( temp );
  } else {
    construct( v_+vused_, t );
    ++vused_;
  }
}

First, consider the simple else case: If we already have room for the new object, we
attempt to construct it. If the construction succeeds, we update our vused_ count. This
is safe and straightforward.  ¤   Sutter, P93   

Otherwise, like last time, if we don't have enough room for the new element we
trigger a reallocation. In this case, we simply construct a temporary Stack object,



push the new element onto that, and finally swap out our original guts to it to ensure
they're disposed of in a tidy fashion.  ¤   Sutter, P94   

But is this exception-safe? Yes. Consider:  ¤   Sutter, P95   

1.If the construction of temp fails, our state is unchanged and no resources have
been leaked, so that's fine.  ¤   Sutter, P96   

2.If any part of the loading of temp's contents (including the new object's copy
construction) fails by throwing an exception, temp is properly cleaned up when
its destructor is called as temp goes out of scope.  ¤   Sutter, P97   

3.In no case do we alter our state until all the work has already been completed
successfully.  ¤   Sutter, P98   

Note that this provides the strong commit-or-rollback guarantee, because the Swap is
performed only if the entire reallocate-and-push operation succeeds. If we were
supporting iterators into this container, for instance, they would never be invalidated
(by a possible internal grow operation) if the insertion is not completely successful. 

T& Top() {
  if( vused_ == 0) {
    throw "empty stack";
  }
  return v_[vused_-1];
}

The Top function hasn't changed at all.  ¤   Sutter, P100   
void Pop() {
  if( vused_ == 0) {
    throw "pop from empty stack";
  } else {
    --vused_;
    destroy( v_+vused_ );          // see Sidebar 1 for info
  }                                // on destroy
 }
}

Neither has Pop, save the new call to destroy.  ¤   Sutter, P101   

In summary, Push has been simplified, but the biggest benefit of encapsulating the
resource ownership in a separate class was seen in Stack's constructor and destructor.
Thanks to StackImpl, we can go on to write as many more constructors as we like
without having to worry about cleanup code, whereas last time each constructor would
have had to know about the cleanup itself.  ¤   Sutter, P102   

You may also have noticed that even the lone try/catch we had to include in the first
version of this class has now been eliminated — that is, we've written a fully
exception-safe and exception-neutral generic container without writing a single try!
(Who says writing exception-safe code is trying?)  ¤   Sutter, P103   

Technique 2: Private Member  ¤   Sutter, P104   

Next, consider what happens if StackImpl's missing /*????*/ access specifier is
public.  ¤   Sutter, P105   

Using public hints that StackImpl is intended to be used as a struct by some
external client, because its data members are public. So again Stack will be



"implemented in terms of" StackImpl, only this time using a HAS-A containment
relationship instead of private inheritance. We still have the same clear division of
responsibilities: the StackImpl object will take care of managing the memory buffer
and destroying all T objects remaining during Stack destruction, and the containing
Stack will take care of constructing T objects within the raw memory. Because
subobjects are created before a class's constructor body is entered, the raw memory
management still takes place pretty much entirely outside Stack, because, for
example, the initial allocation must fully succeed before any Stack constructor body
can be entered.  ¤   Sutter, P106   

This implementation of Stack is only slightly different from the above. For example,
Count returns impl_.vused_ instead of just an inherited vused_. 

Which Technique Is Better?  ¤   Sutter, P108   

So, how do you choose between using StackImpl as a private base class or as a
member object? After all, both give essentially the same effect and nicely separate the
two concerns of memory management and object construction/destruction.  ¤

When deciding between private inheritance and containment, my rule of thumb is to
always prefer the latter and use inheritance only when absolutely necessary. Both
techniques mean "is implemented in terms of," and containment forces a better
separation of concerns because the using class is a normal client with access to only
the used class' public interface. Use private inheritance instead of containment only
when absolutely necessary, which means when either:  ¤   Sutter, P110   

you need access to the class's protected members;  ¤   Sutter, P111   

you need to override a virtual function; or  ¤   Sutter, P112   

the object needs to be constructed before other base subobjects.  ¤   Sutter, P113  

Admittedly, in this case it's tempting to use private inheritance anyway for syntactic
convenience so that we wouldn't have to write "impl_." in so many places.  ¤ 

(In the special case of an empty class, private inheritance may allow for the generation
of more compact objects. See Scott Meyers' article, Counting Objects in C++, for
details.)  

Relaxing the Requirements on T  ¤   Sutter, P116   

When writing a templated class, particularly something as potentially widely useful as
a generic container, always ask yourself one crucial question: How reusable is my
class? That is, what constraints have I put upon users of the class, and do those
constraints unduly limit what those users might want to reasonably do with my class?  

These Stack templates have two major differences from the one we originally
considered. We've discussed one already: They decouple memory management from
contained object construction and destruction, which is nice but doesn't really affect
users. However, there is another important difference: the new Stacks construct and
destroy individual objects in-place as needed, instead of creating default T objects in
the entire buffer and then assigning them as needed.  ¤   Sutter, P118   

This second difference turns out to have significant benefits: Better efficiency, and
reduced requirements on T, the contained type. Our original Stacks from last time



required T to provide four operations:  ¤   Sutter, P119   

default constructor (to construct the v_ buffers)  ¤   Sutter, P120   

copy constructor (if Pop returns by value)  ¤   Sutter, P121   

nonthrowing destructor (to be able to guarantee exception safety)  ¤ 

exception-safe copy assignment (to set the values in v_, and if the copy
assignment throws then it must guarantee that the target object is unchanged;
note that this is the only T member function which must be exception-safe in
order for our Stack to be exception-safe)  ¤   Sutter, P123   

Now, however, no default construction is needed because the only T construction
that's ever performed is copy construction. Further, no copy assignment is needed
because T objects are never assigned within Stack or StackImpl. On the other hand,
we now always need a copy constructor. This means that the new Stacks require only
two things of T:  ¤   Sutter, P124   

copy constructor  ¤   Sutter, P125   

nonthrowing destructor (to be able to guarantee exception safety)  ¤ 

How does this measure up to our original question about usability? Well, while it's
true that many classes have both default constructors and copy assignment operators,
many useful classes do not (In fact, some objects simply cannot be assigned to, such
as objects that contain reference members because these cannot be reseated.) Now
even these can be put into Stacks, whereas in the original version they could not.
That's definitely a big advantage over the original version, and one that quite a few
users are likely to appreciate as Stack gets reused over time.  ¤   Sutter, P127   

Should Stack Provide Exception Specifications?  ¤   Sutter, P128   

In short: No, because we the authors of Stack don't know enough, and we still
probably wouldn't want to even if we did know enough. The same is true in principle
for any generic container.  ¤   Sutter, P129   

First, consider what we as the authors of Stack do know about T, the contained type:
The answer is, precious little. In particular, we don't know in advance which T
operations might throw or what they might throw. We could always get a little fascist
about it and start dictating additional requirements on T, which would certainly let us
know more about T and maybe add some useful exception specifications to Stack's
member functions. However, doing that would run completely counter to the goal of
making Stack widely reusable, and so it's really out of the question.  ¤   Sutter, P130   

Next, you might notice that some container operations (e.g., Count) simply return a
scalar value and are known not to throw. Isn't it possible to declare these as throw()?
Yes, but there are two good reasons why you probably wouldn't:  ¤   Sutter, P131   

1.Writing throw() limits you in the future in case you want to change the
underlying implementation to a form which could throw. Loosening an
exception specification always runs some risk of breaking existing clients
(because the new revision of the class breaks an old promise), and so your
class will be inherently more resistant to change and therefore more brittle.
(Writing throw() on virtual functions can also make classes less extensible,
because it greatly restricts people who might want to derive from your classes.



It can make sense, but such a decision requires careful thought.)  ¤   Sutter,  
P132 

2.Exception specifications can incur a performance overhead whether an
exception is thrown or not, although many compilers are getting better at
minimizing this. For widely-used operations and general-purpose containers, it
may be better not to use exception specifications in order to avoid this
overhead.  ¤   Sutter, P133   

Destructors That Throw and Why They're Evil  ¤   Sutter, P134   

This brings us to our last topic, namely the innocent-looking delete[] p;. What does
it really do? And how safe is it?  ¤   Sutter, P135   

First, recall our standard destroy helper function (see Sidebar 1):  ¤   Sutter, P136   
template <class FwdIter>
void destroy( FwdIter first, FwdIter last ) {
  while( first != last ) {
    destroy( first );        // calls "*first"'s dtor
    ++first;
  }
}

This was safe in our example above because we required that T destructors never
throw. But what if a contained object's destructor were allowed to throw? Well,
consider what happens if destroy is passed a range of five objects: If the first
destructor throws, then as it is written now destroy will exit and the other four objects
will never be destroyed! This is obviously not a good thing.  ¤   Sutter, P137   

"Ah," you might interrupt, "but can't we clearly get around that by writing destroy to
work properly in the face of T's whose destructors are allowed to throw?" Well, that's
not as clear as you might think. For example, you'd probably start writing something
like this:  ¤   Sutter, P138   

template <class FwdIter>
void destroy( FwdIter first, FwdIter last ) {
  while( first != last ) {
    try {
      destroy( first );
    } catch(...) {
      /* what goes here? */
    }
    ++first;
  }
}

The tricky part is the "what goes here?". There are really only three choices: either the
catch body rethrows the exception, or it converts the exception by throwing something
else, or it throws nothing and continues the loop.  ¤   Sutter, P139   

1.If the catch body rethrows the exception, then the destroy function nicely
meets the requirement of being exception-neutral, because it does indeed allow
any T exceptions to propagate out normally. However, it still doesn't meet the
safety requirement that no resources be leaked if exceptions occur. Because
destroy has no way of signaling how many objects were not successfully
destroyed, those objects can never be properly destroyed and so any resources
associated with them will be unavoidably leaked. Definitely not good.  ¤ 

2.If the catch body converts the exception by throwing something else, we've
clearly failed to meet both the neutrality and the safety requirements. Enough



said.  ¤ 

3.If the catch body does not throw or rethrow anything, then the destroy
function nicely meets the safety requirement that no resources be leaked if an
exception is thrown. (True, if a T destructor could throw in a way that its
resources might not be completely released, then there could still be a leak.
However, this isn't destroy's problem... this just means that T itself is not
exception-safe, but destroy is still properly leak-free in that it doesn't fail to
release any resources that it should (namely the T objects themselves).)
However, obviously it fails to meet the neutrality requirement that T
exceptions be allowed to pass through because exceptions are absorbed and
ignored (as far as the caller is concerned, even if the catch body does attempt
to do some sort of logging).  ¤   Sutter, P142   

I've seen people suggest that the function should catch the exception and "save" it
while continuing to destroy everything else, then rethrow it at the end. That too isn't a
solution; for example, it can't correctly deal with multiple exceptions should multiple
T destructors throw (even if you save them all until the end, you can only end by
throwing one of them and the others are silently absorbed). You might be thinking of
other alternatives, but trust me, they all boil down to writing code like this somewhere
because you have a set of objects and they all need to be destroyed. Someone,
somewhere, is going to end up writing non-exception-neutral code (at best) if T
destructors are ever allowed to throw...  ¤   Sutter, P143   

...Which brings us to the innocent-looking new[] and delete[].  ¤   Sutter, P144   

The issue with both of these is that they have fundamentally the same problem we just
described for destroy! For example, consider the following code:  ¤   Sutter, P145   

T* p = new T[10];
delete[] p;

Looks like normal harmless C++, doesn't it? But have you ever wondered what new[]
and delete[] do if a T destructor throws? Even if you have wondered, you can't
know the answer for the simple reason that there is none: The standard says you get
undefined behavior if a T destructor throws anywhere in this code, which means that
any code that allocates or deallocates an array of objects whose destructors could
throw can result in undefined behavior. This may raise some eyebrows, so let's see
why this is so:  ¤   Sutter, P146   

First, consider what happens if the constructions all succeed, and then during the
delete[] operation the fifth T destructor throws. Then delete[] has the same catch-
22 problem (pun intended) outlined above for destroy: It can't allow the exception to
propagate because then the remaining T objects would be irretrievably undestroyable,
but it also can't translate or absorb the exception because then it wouldn't be
exception-neutral.  ¤   Sutter, P147   

Second, consider what happens if the fifth constructor throws. Then the fourth object's
destructor is invoked, then the third's, and so on until all the T objects that were
successfully constructed have again been destroyed, and the memory is safely
deallocated. But what if things don't go so smoothly? In particular, what if, after the
fifth constructor throws, the fourth object's destructor throws? And, if that's ignored,
the third's? You can see where this is going.  ¤   Sutter, P148   

If destructors may throw, then neither new[] nor delete[] can be made exception-
safe and exception-neutral.  ¤ 



The bottom line is simply this: Don't ever write destructors that can allow an
exception to escape. (The C++ standard makes the blanket statement: "No destructor
operation defined in the C++ Standard Library will throw an exception." Not only do
all of the standard classes have this property, but in particular it is illegal to instantiate
a standard container with a type whose destructor does throw.) If you do write a class
with such a destructor, you will not be able to safely even new[] or delete[] an array
of those objects. All destructors should always be implemented as though they had an
exception specification of throw()... that is, no exceptions must ever be allowed to
propagate.  ¤   Sutter, P150   

Granted, some may feel that this state of affairs is a little unfortunate, because one of
the original reasons for having exceptions was to allow both constructors and
destructors to report failures (because they have no return values). This isn't quite true,
because the intent was mainly for constructor failures (after all, destructors are
supposed to destroy, so the scope for failure is definitely less). The good news is that
exceptions are still perfectly useful for reporting construction failures, including
array and array-new[] construction failures, because there they can work
predictably even if a construction does throw.  ¤   Sutter, P151   

Safe Exceptions  ¤   Sutter, P152   

The advice "be aware, drive with care" certainly applies to writing exception-safe
code for containers and other objects. To do it successfully, you do have to meet a
sometimes significant extra duty of care, but don't get unduly frightened by
exceptions. Apply the guidelines outlined above — that is, isolate your resource
management, use the "update a temporary and swap" idiom, and never write classes
whose destructors can allow exceptions to escape — and you'll be well on your way to
safe and happy production code that is both exception-safe and exception- neutral.
The advantages can be both concrete and well worth the trouble for your library and
your library's users.  ¤   Sutter, P153   
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Sidebar 1: Some Standard Helper Functions
The Stack and StackImpl presented in this article use three helper functions from
the standard library: construct, destroy, and swap. In simplified form, here's
what these functions look like:  ¤   Sutter, P156   
  // construct() constructs a new object in
  // a given location using an initial value
  //
  template <class T1, class T2>
  void construct( T1* p, const T2& value ) {
    new (p) T1(value);
  }
This is called "placement new," and instead of allocating memory for the new
object it just puts it into the memory pointed at by p. Any object new'd in this way
should generally be destroyed by calling its destructor explicitly (as in the
following two functions), rather than using delete.  ¤   Sutter, P157   
  // destroy() destroys an object or a range
  // of objects
  //
  template <class T>
  void destroy( T* p ) {
    p->~T();
  }
  template <class FwdIter>
  void destroy( FwdIter first, FwdIter last ) {
    while( first != last ) {
      destroy( first );
      ++first;
    }
  }
  // swap() just exchanges two values
  //
  template <class T>
  void swap( T& a, T& b ) {
    T temp(a); a = b; b = temp;
  }
Of these, destroy(iter,iter) is the most interesting. We'll return to it a little
later in the main article; it illustrates more than you might think!  ¤   Sutter, P158   
To find out more about these standard functions, take a few minutes to examine
how they're written in the standard library implementation you're using. It's a very
worthwhile and enlightening exercise.  ¤   Sutter, P159   



Sidebar 2: Exception Safety and the Standard Library
Are the standard library containers exception-safe and exception-neutral? The
short answer is: Yes. ( Here I'm focusing my attention on the containers and
iterators portion of the standard library. Other parts of the library, such as
iostreams and facets, are specified to be strongly exception-safe.)  ¤   Sutter, P160   

All iterators returned from standard containers are exception-safe and can be
copied without throwing an exception.  ¤   Sutter, P161   

All standard containers must implement the basic guarantee for all operations:
They are always destructible, and they are always in a consistent (if not
predictable) state even in the presence of exceptions. To make this possible,
certain important functions are required not to throw — including swap (the
importance of which was illustrated by my second example),
allocator::deallocate (the importance of which was illustrated by the
discussion of ::operator delete in the first example) and certain operations of
the template parameter types themselves (especially the destructor, the importance
of which is illustrated under the subhead "Destructors That Throw and Why
They're Evil").  ¤   Sutter, P162   

All standard containers must also implement the strong guarantee for all
operations (with two exceptions; see next paragraph): They always have commit-
or-rollback semantics, so that an operation such as an insert either succeeds
completely or else does not change the program state at all. "No change" also
means that failed operations do not affect the validity of any iterators that
happened to be already pointing into the container.  ¤   Sutter, P163   

There are only two exceptions: First, for all containers, multi-element inserts
("iterator range" inserts) are never strongly exception-safe. Second, for vector<T>
and deque<T> only, inserts and erases (whether single- or multi-element) are
strongly exception-safe only if T's copy constructor or assignment operator do not
throw. ( Unfortunately, this means that inserting into and erasing from a
vector<string> or a vector<vector<int> >, for example, are not strongly
exception-safe.) Why these particular limitations? Because to roll back either kind
of operation isn't possible without extra space/time overhead, and the standard did
not want to require that overhead in the name of exception safety. All other
container operations can be made strongly exception-safe without overhead. So if
you ever insert a range of elements into a container, or if T's copy constructor or
assignment operator can throw and you insert into or erase from a vector<T> or a
deque<T>, the container will not necessarily have predictable contents afterwards
and iterators into it may have been invalidated.  ¤ 

What does this mean for you? Well, if you write a class that has a container
member and you perform range insertions, or that has a member of type
vector<T> or deque<T> and T's copy constructor or assignment operator can
throw, then you are responsible for doing the extra work to ensure that your own
class' state is predictable if exceptions do occur. Fortunately, this "extra work" is
pretty simple: Whenever you want to insert into or erase from the container, first
take a copy of the container, then perform the change on the copy, and finally use
swap to switch over to using that new version after you know that the copy-and-
change steps have succeeded.  ¤   Sutter, P165   


