
Agile Metrics at the Israeli Air Force

Yael Dubinsky1, David Talby2, Orit Hazzan3, and Arie Keren2

1 Department of Computer Science
Technion – Israel Institute of Technology

yael@cs.technion.ac.il

2 MAMDAS – Software Development Unit
Air Force, IDF, Israel
davidt@cs.huji.ac.il

ariekk@netvision.net.il

3 Department of Education in Technology & Science
Technion – Israel Institute of Technology

oritha@techunix.technion.ac.il

Abstract

It is a significant challenge to implement and

research agile software development methods in
organizations such as the army. Since it differs from
organizations in the industry and the academia, data
gathered in the army and its continuous analysis may
enrich the community knowledge abut agile methods.
This work describes a research, conducted during an
entire release, about one development team at the
Israeli Air Force that works according to Extreme
Programming. The establishment of this team and the
investigation of the first release is part of a long-term
process, started last year, aiming to reduce delivery
time while raising communication and customer
collaboration. Among several themes this research is
concerned with, we focus on agile metrics and provide
a metrics mechanism that was established and refined
along the release development.

1. Introduction

Experience gathered by the community of software
development practitioners indicates that the
introduction of the agile software development method
([3]) Extreme Programming (XP) [1] into an
organization goes along with conceptual and
organizational changes that are an integral part of the
process ([4], [8]).

The army is a large and hard-to-change organization
with respect to fixed regulations, project approval,

management method and organizational structure.
Therefore, software development according to
traditional software development methods, such as the
water fall model and its variations, is still common at
such organizations. These facts challenge the transition
to agile software development methods. Further,
though it seems that there are XP practices that fit the
military culture (e.g., the planning game and
sustainable pace with respect to time management and
collective ownership where there is a special team
spirit), and the benefits of XP projects are well known
([7]), the embracement of the complete XP method is a
large-scale change, both to managers and developers.

 “Betting” on the success of XP for a large-scale
project, such as the one on which this paper focuses,
was therefore considered a risk. Accordingly, the
project began under close management supervision,
with high hopes for being a prototype for the
implementation of XP in other teams on one hand, and
fear of incompatibility of XP to the army environment
on the other hand. In order to cope with this dual
perspective, presenting the method’s benefits and
pitfalls, a tight and continuous measurement of the
development process was established. Therefore, it was
a straight forward decision both to constantly evaluate
the development process as part of the XP tracker role
([1]) and to conduct a systematic strategic research
about the unique development environment (a specific
military unit) in order to enrich the knowledge of the
community of the agile software developers.

This paper focuses on a metrics mechanism that was
established and refined during the first release of the
project. In Section 2 we describe the research setting,
elaborating on the research tools and methods. Section
3 describes the project setting, and the rational behind
the metrics used. Section 4 presents the data that was
gathered and its analysis. We conclude in Section 5.

2. Research Setting

This section describes the research background and
flow. In Section 2.1 we describe the process of
introducing the agile approach in general and XP
method in particular into one of the Israeli Air Force
units. In Section 2.2 we delve into the details of the
research method specifying the research tools we used.

2.1 Research Background

The software project we deal with has been
developed by MAMDAS - a software development
unit in the Israeli Air Force. The project is developed
by a team of 60 skilled developers and testers,
organized in a hierarchical structure of small groups.
The project develops large-scale, enterprise-critical
software, intended to be used by a large and varied user
population.

The forth author, who is in charge of the system
engineering group of this project, was requested to lead
a change in the current development process. This
change aimed at implementing a new software
development process that would enable a rapid
response to customers' requests and requirement
changes, and would obtain feedback with respect to
released features. This change-oriented sub-project was
named “Short-Cycles”. Its duration was set to one year,
in which a new methodology had to be suggested, and
a pioneer team should start implementing it. It was
clear that an organizational and conceptual change
should take place. Since the entire team was relatively
large and teammates had different individual interests,
such a change could not be performed over night, but
rather in a gradual, stage-based process which was to
be planned very carefully.

It is important to note that the Air Force leadership
supported the Short-Cycles initiative. Furthermore, the
leadership specifically declared that, while a reduction
in quantity might be accepted, quality and fitness to
customers' needs were not to be compromised.

One of the decisions of Short-Cycles management
was to learn about the agile approach in general and
about XP in particular. As a result of this decision, an
XP workshop, facilitated by the first and the third
authors, was conducted in the summer of 2004. This

workshop was attended by project members, who will
be able later to evaluate and decide upon the sequel of
Short-Cycles. A report about the workshop which
includes participants’ reflection is presented in [2].

During December 2004, the first XP team was
established with the second author as the project
leader. Besides the coach, among 15 teammates, 7
teammates are developers who work full time and 8
teammates are system engineers, system analysts,
developers and testers who work between 30% and
60% on this project. This team should evaluate the
effectiveness of XP for the said project. It was
encouraging to observe that after the first two weeks
iteration “managers were very surprised to see
something running” and everyone agreed that “the
pressure to deliver every two weeks leads to amazing
results” [quotes from team members reflections]. Still,
accurate metrics are required in order to take
professional decisions, to analyze long-term effects,
and to increase confidence of all management levels
with respect to the process that XP inspires.

2.2 Research Method

Two main research approaches are used by us in the

investigation of the process of implementing XP in the
team’s work. The first one is a qualitative approach in
which we seek to understand the process from the
participants’ point of view. Accordingly, we ask the
team members questions such as “How do teammates
conceive the change?”, “What process characteristics
can and should be measured?”, “In what frequently
should each metrics be measured?” and so forth. The
second approach is a quantitative one, in which we aim
at measuring the effectiveness of the process.
Accordingly, we look for ways to answer questions
such as “What is the work progress?”, “What is the
status of the project resources?”, “What is the quality of
the product?”, “How continuous is the integration?”, etc.

Two perspectives are used to analyze the gathered
data. The first one is the insider perspective performed
by the second and the forth authors who play key roles
in the process itself, were familiar with the technical
aspects of the project as well as with its managerial and
social ones. The second author - the team leader - acted
also as the tracker during the first release. The second
perspective is an outsider perspective carried out by
the first and third authors who, as consultants, analyze
the process without being part of it.

Following are the research tools that are used for
data gathering:
Observations: Every two weeks one day is observed
from both insider and outsider perspectives. This day
includes a presentation of the work of the previous
iteration and the planning game for the next iteration.

These activities are attended by the customer, all
teammates and representatives of the project
management. The consultants participate in some of
these days.
Reflections: Every two weeks, before the next
planning game is started, the consultants conduct a
reflection session in which the participants of the
above mentioned days are asked to reflect on the
process and on their activities within the process. The
discussions raised are documented.
Questionnaires: Participants answer open and close
questions on process related subjects.
Interviews: Two interviews with the team leader (the
second author), which focused on the evolution and
implementation of the quantitative metrics mechanism,
were conducted by the first author.
Quantitative metrics: Quantitative data is gathered by
teammates’ reports as well as by automated data
retrieved by the development environment.

Some of the research tools, like observations,
reflections and quantitative metrics, are used in an
iterative, cyclic manner in each iteration. This enables
us to gather and analyze extensive data that can be
analyzed throughout the process time scale.

3. Project Setting and Origin of Metrics

3.1 Project Setting

Like many organizations making their first attempt
to introduce XP, this project started at an organization
with a rigid, well established, highly managed
development process. While this process lacks agility
and enforces high overhead, it does provide answers to
many managerial and developmental questions. There
are ready-made tools, document templates and tutorials
to support planning, progress tracking, formal analysis
& design artifacts, fault management, configuration
control and so forth.

The XP principles contradict many of these existing
work processes, and so the XP team was given a
waiver on most of the existing regulations. This meant
that we were able to design our own work processes, as
long as we could show our management that the
project is managed – effectively run and under control.
One of the fortunate results of this waiver was that the
metrics presented in this paper are highly integrated
with the way the project is actually managed. The next
section describes the rational behind each metrics, and
elaborates on this issue.

In contrast to the relative freedom in the process
aspect, we are bounded by a unique set of technical
constraints. Our project is built based on a large-scale
in-house object-oriented framework [6], which handles

many of the underlying technical aspects of the system.
The framework contains rich functionality, and enables
the delivery of usable application features in record
time, as well as a significant cut of the entire project’s
cost. The framework also has a profound effect on the
development process, in two major aspects.

The first aspect is formal detailed specifications.
The framework relies on a metadata repository [10],
which contains most of the system’s specifications:
data entities, data types, actions, transactions, user
types and privileges, messages, external interfaces and
so forth. This data is edited in the repository, in formal
forms – in contrast to free-text documents – and much
of it is used to automatically generate code and other
files. This has the benefit of eliminating the need to
manually code these specifications, and to test this
manual translation. The framework maximizes this
benefit, by formalizing as much of the detailed
specifications as possible. The result is that our
development process does not start with ordinary
design and then coding – it starts with design,
continues with writing the detailed specifications in the
metadata repository, and only then in coding those
parts of the specs that are not automatically generated.

Automated acceptance testing [9] is the second
aspect in which the framework affects our process.
This is a tool that supports writing a test scripts, such
that each test step – for example “login”, “do action” or
“verify field value” – is written in a formal yet human-
readable way. The framework can execute these formal
test scripts, supporting both batch and interactive
modes of test execution. This saves a very large
amount of effort, spent on running acceptance tests
manually, and also provides other benefits to the
development process (see [9]). In large organizations,
such as ours, acceptance tests are the responsibility of a
dedicated QA group, but in this project the acceptance
testing framework enabled moving this responsibility
into the XP team – making it responsible for building
the product all the way from detailed specifications to
production-quality testing.

It is important to note that the above paragraphs are
presented to explain the environment in which we
operate; they do not impair the wide applicability of
our results. Each project has its technical constraints,
and must tailor and constantly refine XP metrics to its
specific needs. Due to this perspective and the size of
the project, existing tools like for example XP-EF
(Williams et al.) seem not suitable in this case. The
next section defines the metrics we used, and starts
each one by analyzing why it was needed. We suggest
that these considerations, and the results that follow,
are typical to XP introductions in large and
conservative organizations.

3.2 Origin and Goals of Metrics

As mentioned earlier, the project was the first large-
scale attempt at XP in that military unit, deviating
heavily from existing work policies, and thus closely
watched as risky. Therefore, the design of the right
metrics began with a project risks analysis; a metrics
was added where it seemed valuable in reducing a risk.
Although existing software metrics were studied [5],
we preferred to design our own metrics, to fit the exact
needs as dictated by the risks list.

Metrics can be used for three purposes:
1. To communicate to the team which behaviors are

most valued, or most problematic.
2. To enable faster and more accurate decision making

by the project’s leadership.
3. To communicate information about the project to

upper management.
While all three reasons are important, our

experience from the first release is that the first one is
the most important at this initial stage, when XP is
introduced to a team. To an extent, people and teams
do behave as they are measured. We believe that this
by itself is a strong motivation for any XP team to
define and refine own metrics.

3.3 Definition of Metrics

In this part we describe four metrics and the kinds
of data that are gathered to calculate them. These four
metrics present information about the amount and
quality of work that is performed, about the pace of the
work progresses, and about the status of the remaining
work versus remaining human resources.

Product size, initially just called ‘Product’, is the
first metrics. It aims at presenting the amount of
completed work. The data that was selected to reflect
the amount of work is the number of test points. One
test point is defined as one test step in an automatic
acceptance testing scenario ([9]) or as one line of unit
tests. The number of test points is calculated for all
kinds of written test and is gathered per iteration per
component. Additional information is gathered with
respect to the number of test points for tests that pass,
the number of points for tests that fail, and the number
of points for tests that do not run at all. As was
presented by the project leader - “This is not a quality
metrics. For quality metrics we count faults.”

The initial risk that the product size metrics was
designed to reduce was the inability to measure the
progress of the XP project, and thus the inability to
compare its velocity to that of the organization’s
‘traditional’ development. The advantage of test points
is that the amount of acceptance tests for a given

feature is usually proportional to the feature’s size and
complexity. This cannot be said on the count of lines
of code, or lines of specifications.

Another high risk that the product metrics deals
with is un-thoroughly tested product, caused by people
not writing or running enough tests. Most people do
not like writing tests, and many of the team’s members
had experience in other projects in the organizations, in
which they developed artifacts which were tested later
(for example by the QA team). This product size
metrics was very effective in making two important
points to the team. First, test points are the only metrics
of productivity in the project – nothing partial (like
running code, for example) counts. Second, regular
regression testing is a must – since a test point must be
run (and pass successful) each iteration again to be
counted as part of its product.

Pulse is the second metrics, which aims to measure
how continuous the integration is. The data is
automatically gathered from the development
environment by counting how many check-in
operations occur per day. The data is gathered for code
check-ins, automatic-test check-ins, and detailed
specifications check-ins. When referring to code in this
paper we mean code plus its unit test.

The risk that the Pulse metrics was designed to
monitor is high overhead due to lack of continuous
integration. XP requires a mindset that is very different
than what people were used to: instead of completing a
two-week specifications task, now an entire iteration is
just two weeks long. This means that a full cycle of
specification-coding-testing must be completed within
these two weeks, and usually more than once per
teammate. In the way the configuration tool was used,
checked-in changes in files are visible to all , so check-
in is the basic method of integration.

Therefore, the initial role of the Pulse metrics was
not to measure the amount of work, but instead to
verify that it spread evenly across iterations. “Steady”
pulse means that pulse is even across many days; it is
the good status. “Spiky” pulse means that most check-
ins are grouped at the end of iterations, meaning that
people don’t integrate enough during iterations; it is
the bad status.

Burn-down is the third metrics. It presents the
project remaining work versus the remaining human
resources. This metrics is supported by the main
planning table that is updated for each task according
to kinds of activities (code, tests, or detailed
specifications), dates of opening and closing, estimate
and real time of development and, the component that
it belongs to. In addition, this metrics is supported with
the human resources table that is updated when new
information regarding teammates' absence arrives. This
table also contains the product’s component assigned

to each of the teammates and with the percentages of
her/his position in the project. By using the data of
these tables, this metrics can present the remaining
work in days versus the remaining human resources in
days. This information can be presented per week or
for any group of weeks till a complete release, both for
the entire team or for any specific component.

The burn-down graph answers a very basic
managerial question: are we going to meet the goals of
this release, and if not, what can I do about it? The risk
behind the metrics is the opposite – the risk of missing
release goals due to the lack of a clear view of progress
during the release. The burn-down is useful for both
the team’s leaders, for example changing teammates’
tasks according to high priority components during the
release, as well as for upper management, to easily
verify whether the release is on track.

Release goals were set before each release – each
goal is a high-level feature. Goals are defined by the
user, and are verified by matching a rough estimate of
the effort required to complete each goal (given by the
development team) to the total available resources.
Once goals are defined and estimated, both remaining
work and remaining resources are based on this initial
estimation, which is refined as the release progresses.

Faults is the fourth metrics, which counts faults per
iteration. During the release on which this paper
focuses all faults that were discovered in a specific
iteration were fixed at the beginning of the next
iteration. The faults metrics is required to continuously
metrics the product’s quality. Note that the product size
metrics doesn’t do it, since although it metrics test
points, it does not correlate between the number of
failed or un-run test steps to the number of actual bugs.

4. Data and Analysis

Data was gathered throughout the first release,

which had four iterations. The metrics were presented
once in two weeks before the planning game, and were
also continually available on the project’s intranet.
Most planning-game participants have reported that
they are viewing the metrics status only when
presented once in two weeks. The project leader
however stated that the metrics cause change in
behavior especially in the matter of writing more tests.

4.1. Product Size Metrics Analysis

Usually we are not used to view software product
size using its tests capacity. However, this is most
interesting aspect of the Size Metrics. Figure 1 shows a
global view for all four iterations presenting an
interesting situation of growing numbers of test points

as the product is developed. One of the reasons for this
growth is the relatively small number of testers’ hours
for automatic test writing that were allocated to the
project at first, and soon turned to be a bottleneck. In
the third iteration, for example, not all coded features
were tested, and accordingly the Size metrics showed
only a small increase.

Figure 1: Size Metrics during the release

0
200
400

600
800

1000
1200

1400
1600
1800

End of 1st
Iteration

End of 2nd
Iteration

End of 3rd
Iteration

End of 4th
Iteration

N
um

b
er

 o
f T

es
t P

oi
n

ts

Successful Test Points Failed Test Points
Test Steps that did not run

Consequently, it was decided that at the beginning

of the fourth iteration the main tester will teach the
developers to write automatic test scenarios for their
code. During the fourth iteration she taught developers,
so wrote fewer tests by herself. The end result was a
sharp increase in product size during the iteration.

During the first week of the third iteration many
teammates were absent since they participated in a
routine training. Indeed, we can see low number of
tests considering that more developers have started to
write tests. The tests are written for every additional
code and there is an option to drill down in data in
order to observe the work capacity according to
components. Figure 2 presents the number of test
points per component per iteration.

Figure 2: Size Metrics according to components

0 100 200 300 400 500 600 700

Account

Bank

Mortgage

Warning

Marketing

Financing

C
om

po
ne

nt
 N

am
e

Number of Test Points

Iteration 1 Iteration 2 Iteration 3 Iteration 4

It can be observed that the forth iteration was the
most fruitful. New components were dealt with, while
increasing number of test points of other components
as well. This shows a mature stage of the process.
Indeed, after the development environment is stable,
the testing process and knowledge caught us with the
rest of the development activities. The components’
names were changed for security reasons.

4.2. Pulse Metrics Analysis

When the Pulse Metrics was first presented a slight
of resistance to this metrics was expressed. Several
teammates said that it does not reflect continuous
integration. One team member said that it is a twisted
metrics that searches for rating like web surveys, and,
accordingly, he suspects that teammates will simply
click for check-in operation just to raise the count. The
value of courage was in the air when others insist on
understanding why someone would do this. All sounds
of resistance were gone when teammates observed that
first, only real check-in operations are counted –
meaning there was a change in the part that is
integrated – and second, that this metrics says even
more than continuous integration, that is, actually
continuous work. Figure 3 shows the Pulse Metrics for
the entire release.

As can be observed the first week of each iteration
always has fewer check-in operations than the second
week of the iteration has. Also, the forth iteration looks
as if the work was best distributed among iteration
days. We can see the reduction in work at the third
week and the pick as a result at the forth week when
teammates were back at work.

Figure 3: Pulse Metrics during the release

0

50

100

150

200

02
/0

1/
20

05

09
/0

1/
20

05

16
/0

1/
20

05

23
/0

1/
20

05

30
/0

1/
20

05

06
/0

2/
20

05

13
/0

2/
20

05

20
/0

2/
20

05

Days of Release

N
u

m
b

er
 o

f C
h

ec
k-

in

O
p

er
at

io
ns

Figure 4 presents the Pulse Metrics of the third
iteration with the details of the different check-in
operation kinds. Note that check-ins of code files are

the most prevalent, because code tends to be spread
over more files than specifications of test scenarios.

Figure 4: Pulse Metrics of iteration 3

0

10

20

30

40

50

60

30
/01

/200
5

31
/01

/200
5

01
/02

/200
5

02
/02

/200
5

03
/02

/200
5

04
/02

/200
5

05
/02

/200
5

06
/02

/200
5

07
/02

/200
5

08
/02

/200
5

09
/02

/200
5

10
/02

/200
5

Days of Iteration

N
um

b
er

 o
f C

ec
k-

in

O
pe

ra
tio

ns

Code Automated Test Detailed Specs

4.3. Burn-down Metrics Analysis

The Burn-down Metrics is a classical managerial

metrics that shows whether our plans can actually be
performed. Figure 5 presents the Burn-down Metrics
for the entire release. As explained in section 3.2, these
are derived from the estimates of the release goals, and
from the total resource allocation for the entire release.
Each two columns represent the data that was known at
the beginning of the specified week. At the beginning
of the first week, before the release has started, there
were 387 days as resources for the entire release and
only 370 days of estimated work. During the release
the number of days as resources was reduced while
development work was performed. The data on the last
eighth week shows the eighth week itself where
number of days as resources is 49 and the estimated
work is 46.25 days.

Figure 5: Burn-down Metrics during the release

0

50
100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8

Week Number

D
ay

s

Remaining Work Remaining Resources

 This kind of Burn-down Metrics gives a two-
months view on the development process and is very
successful as a plan chart. Figures 6 and 7 presents drill
down data of the fifth and sixth weeks that are part of

the third iteration. These figures present the inner data
of the Burn-down metrics that shows the remaining
human resource days versus the remaining work days
for each of the product’s components.

In addition to the product’s components, overhead
was also referred to. Overhead means training sessions,
the planning game days, coordination meetings, and
other activities which are not development. People
were not allocated specifically for the ‘overhead’
component – this is why its remaining resources are
zero all along – instead, it is meant to be spread
relatively equally across all team members. The
simplest and most effective way to achieve this was to
require a small positive gap between resources and
work in each component, which is reserved for the
shared overheads. Note that the cumulative burn-down
chart (shown in Figure 5) does contain the gap and is
therefore exactly accurate.

As can be observed the variation is significant when
looking according to components, illustrating the
strength of this metrics with respect to the ability to
decide on human resources mobility. For example, in
Figure 6 the ‘Mortgage’ component was way behind its
goals in week 5, and this was identified and fixed in
week 6, by a combination of added human resources
and reduction of features for the release. Also note that
the problem was not visible from looking at the
cumulative burn-down chart alone, since the ‘Bank’
and ‘Account’ components have a surplus of resources
in week 5 that cancels the lack in the ‘Mortgage’.

Figure 6: Burn-down Metrics at Week 5

0 10 20 30 40 50 60 70

Account

Bank

Mortgage

Marketing

Financing

Development

(Overhead)

S
o
ft
w

ar
e

C
o
m

p
o
n
en

ts

Days

Remaining Work Remaining Resources

Figure 7: Burn-down Metrics at Week 6

0 5 10 15 20 25 30 35

Account

Bank

Mortgage

Marketing

Financing

Development

(Overhead)

S
of

tw
ar

e
C

om
p
on

en
ts

Days

Remaining Work Remaining Resources

4.4. Faults Metrics Analysis

The Faults Metrics is a standard quality metrics that

presents the number of faults that are found and their
kind. It can be a coding error or a detailed
specifications error. Figure 8 presents the number of
faults per iteration and their distribution. Note how
spec errors are common at the start of the project, when
many team members were inexperienced with using
the framework, and slowly reduce their relative rate.

Figure 8: Fault Metrics during the release

0

5

10

15

20

25

30

1 2 3 4

Iteration Number
N

um
be

r o
f E

rr
or

s

Code Errors Detailed Specs Errors

4.5. Reflection

In this part we present teammates and management
reflections on the process. The most impressive
observation retrieved in a reflection meeting which
took place after the first release, was that experienced
participants were very satisfied from the XP process –
more than younger ones. This observation can be
explained by the fact that the experienced participants
had previous experience to relate to. The experienced
participants emphasized the real feedback they get
every two weeks, the fixed dates of delivery, the ease
of combining inexperienced people in the project, and
the way they are aware of problems almost
immediately when they occur. Younger participants
were satisfied from the direct communication and
connection with the customer and from the process itself.
Most developers wrote the word "people" answering
what they liked most thus XP was really good in
melting the team in a very short period.

The feedback on the Size Metrics was that it
motivates writing tests and that it can be referred also
as complexity metrics. If a test scenario has twice as
many step as another scenario, it is considered to be
more complicated, about twice as much. However, as
for unit tests, the developers who did write them said
that each unit test line should be worth 2 test points,
since unit tests are often more difficult to write and test

more subtle bugs (multi-threading issues, for example)
than do acceptance tests. This issue has been left as an
open question in the project so far.

The feedback on the Pulse Metrics was that it did
not influence the development flow mainly since the
main risk that it was designed to monitor – that
teammates will integrate only at the end of the iteration
– did not happen in practice. Still, it was decided to
continue monitoring this metrics.

The feedback on the Burn-down Metrics was very
interesting yet expected. Managers said it is important,
and helps in making decisions, while others said it is
not important. Managers also claim that this metrics
can help scaling XP, for example to manage several
teams developing a single large project.

5. Conclusion

In this paper we present the results of a research
conducting at one of the software development teams
of the Israeli Air Force. The use of the presented
metrics mechanism increases confidence of the team
members as well of the unit’s management with
respect to using agile methods. Further, these metrics
enable an accurate and professional decision making
process for both short- and long-term purposes.

In future work, we plan to continue refining the
metrics mechanism while investigating its scalability,
both on the time axis with more releases to come, and
on the size axis, as more teams under this project join
the XP method.

6. References

[1] Beck, K., Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.

[2] Y. Dubinsky, O. Hazzan, and A. Keren, “Introducing
Extreme Programming into a Software Project at the Israeli
Air Force”, 6th International Conference on Extreme
Programming and Agile Processes in Software Engineering,
2005.

[3] Highsmith, J., Agile Software development Ecosystems,
Addison-Wesley, 2002.

[4] K. Johnsen, R. Stauffer, and D. Turner, “Learning by
Doing: Why XP Doesn’t Sell”, Proceedings of the XP/Agile
Universe, 2001.

[5] Kan, S., Metrics and Models in Software Quality
Engineering (2nd Edition), Addison-Wesley 2002.

[6] Mohamed, F., Schmidt, D., and Johnson, R., Building
Application Frameworks, Wiley 1999.

[7] D.J., Reifer, “How to get the most out of Extreme
Programming/Agile Methods”, Proceedings of the 2nd XP
Universe and the first Agile Universe Conference, 2002, pp.
185-196.

[8] H. Robinson, and H. Sharp, “The Characteristics of XP
Teams”, 5th International Conference on Extreme
Programming and Agile Processes in Software Engineering,
2004, pp. 139-147.

[9] D. Talby, et al, "A Process-Complete Automatic
Acceptance Testing Framework”, SwSTE, 2005.

[10] D. Talby, D. Adler, Y. Kedem, O. Nakar, N. Danon and
A. Keren, "The Design and Implementation of a Metadata
Repository”, INCOSE/IL, 2002.

[11] L. Williams, L. Layman, and W. Krebs, “Extreme
Programming Evaluation Framework for Object-Oriented
Languages - Version 1.4”, North Carolina State University
Department of Computer Science, TR-2004-18, 2004.

