
3 0 I E E E  S O F T W A R E P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0  ©  2 0 0 6  I E E E

development cycle and its accompanying jar-
gon, including “delivering to QA,” “meeting
the QA criteria for delivery,” and “prioritizing
bugs.” Agile practices require full integration
of testing and development, which can alter
both organizational structures and high-level
product-release policies. As a result, fully
adopting agile quality practices is slower and
more difficult than adopting agile program-
mer-oriented practices, such as pair program-
ming and test-first programming, which are as-
similated only within the development team.6

Currently, few real projects that implement
full agile quality processes—and thus undergo
these sometimes radical changes—have re-
ported substantial findings. Here, we present
and analyze new data from a real, large-scale
agile project to develop a business-critical en-
terprise information system for the Israeli Air
Force (IAF). Our results offer new evidence that
agile testing practices actually work, dramati-

cally improving development quality and pro-
ductivity in line with Kent Beck’s flat cost-of-
change curve.1 We describe the organization’s
successful practices and guidelines in four key
areas: test design and activity execution, work-
ing with professional testers, planning, and de-
fect management. This article closes several
gaps in existing publications,1,2,7 most notably
by describing how to effectively use profes-
sional testers and how to thoroughly accept-
ance-test a system that’s too large and complex
for a single customer to specify.

Project overview
The IAF’s enterprise information system is

critical to daily operations and information se-
curity. As a result, the target system is highly
complex and must be of the utmost quality.
The IAF considered the project risky both be-
cause of its size and because it was the first
project of this scope to be developed in the or-
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ganization using an XP-based method. Conse-
quently, many different stakeholders closely
scrutinized the development process.

To manage risks and provide full and timely
information about the project’s progress, the
team developed a set of metrics,8 consistently
collected and analyzed data, and held regular
reflection meetings and formal debriefings.
External consultants helped with and aug-
mented these efforts.

We derived our data from the study proj-
ect’s first four releases (over eight months).
Our quantitative data is the same that the
project team used for ongoing project tracking
and decision making, so it’s of high quality
and validity. Our qualitative data includes
recordings of formal reflection meetings and
debriefings, along with data from question-
naires, interviews, and an analysis of formal
organizational documents depicting and ex-
plaining project decisions. To our knowledge,
this is the most comprehensive data set from
an actual project using agile quality practices
that has published its results to date.

Conforming to XP
The project team implemented many of the

standard XP practices,1,7 which we’ve itali-
cized in this and the next section.

XP’s basic practice is short releases. The
team delivered working software at each iter-
ation, which typically lasted two weeks. At the
end of each iteration, the team formally pre-
sented the system to the customer for feed-
back. The team fully tested the system every
two weeks. Team members fully specified,
coded, and tested each new feature during the
iteration. Moreover, developers performed full
regression testing at every iteration, fixing all
known defects. The goal here was to achieve
several measurable testing benefits: few new
and open defects, a short average time for de-
fect fixes, and short average defect longevity.

The team used the planning game practice
to plan project iterations and releases.1 In the
planning game, the entire team meets and the
customer describes and prioritizes the stories
that the system’s next release should imple-
ment. The team then breaks the stories down
into development tasks and estimates their
cost. Planning’s goal is to keep a sustainable
pace and define refactoring activities, thus
achieving simple design.

From the project’s start, there was signifi-

cant customer collaboration and fruitful com-
munication among teammates. The customer
participated in all planning games at both the
release and iteration levels. In addition to re-
viewing the system during formal meetings,
the customer regularly viewed in-development
features and discussed them with analysts, de-
velopers, and testers. Formally, however, the
customer belonged to a different organiza-
tional unit and had other duties.

The project also employed XP’s whole-team
and sit-together practices. From day one, the
project team met in the same room and was
managed as a single, coherent team. This team
included developers, architects, a tester, and
business analysts. The exception to the whole-
team practice was the customer, who had a
workstation in the team room but used it only
occasionally. These team-centered approaches
resulted in two measurable test-related bene-
fits. First, the defect-management overhead
was lower than in traditional projects, where
the QA and development teams are separate
entities. Second, the project produced fewer
false defects (“false alarms”) than traditional
projects do.

Team members promoted an informative
workplace using story cards on the wall,
which describe the details of the different de-
velopment tasks and their status. They also
published up-to-date design diagrams and
held a stand-up meeting every morning. Fi-
nally, the team practiced continuous integra-
tion, achieving one to three integration builds
on an average development day.

Diverging from classic XP
The project differed from classic XP proj-

ects in three respects. First, in addition to code
and tests, the team was required to produce
detailed specifications as a development-
process output. This was required due to or-
ganizational policies and obligations, as well
as because the project had to produce semifor-
mal specifications for a metadata repository9

to enable automatic code generation. So, com-
pleting a feature in this project meant com-
pleting its specifications, code, and tests. Team
members were thus encouraged to use pair
programming, collective ownership, and cod-
ing standard practices for not only code but
also specifications and tests.

Second, unlike in classic XP, the project’s
acceptance testing (also known as user testing)
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was far too complex for the customer to fully
specify. According to the project’s leaders, ac-
ceptance testing would require the equivalent
of two full-time personnel. This finding led the
organization to use professional testers—a
common choice in large-scale projects. So, the
project modified the customer tests practice to
retain its essence while making it practical: Do
thorough acceptance testing, but not only by
the customer.

Third, the project modified test-driven de-
velopment to focus on the continuous creation
of automated acceptance tests rather than unit
tests. In classic XP, code is developed by first
writing a (failed) unit test, then writing the
code to make it pass, and so on. This project
required a solution for automating the massive
amount of constantly generated acceptance
tests. The solution was a tool—well integrated
in the project’s development environment—
that simulates an end user working on the
complete multitier system.10 Unlike classic XP,
which automates acceptance tests as coded
unit tests, in this critical project, the organiza-
tion considered only real simulation to be ad-
equate acceptance testing. So, while the proj-
ect still used unit testing, writing test scenarios
directly into the automated acceptance-testing
tool was preferred whenever possible. In this
respect, test-first development meant planning
test scenarios before coding and never consid-
ering a feature “complete” before all its tests
were written and passed.

Each of the three exceptions to standard
XP procedures is a typical issue for large-scale
projects. Nonetheless, such differences must
be kept in mind when generalizing our agile
development results.

Test design and execution
Making sure that testing is everyone’s on-

going business is a big challenge. This project
tackled it by making testing part of each team
member’s work, and a key measure of both
team and personal productivity.

Everyone tests
In a traditional project, “everyone is re-

sponsible for quality,”2 but in agile projects,
everyone actually writes tests. This includes all
developers, business analysts, and even the
customer. For the IAF, this was a radical shift
from existing practices. The organization im-
plemented the practice after developers received

the required extra training, but the customer
took part only in defining and reviewing some
test cases.

Having everyone test offered several proj-
ect advantages. First, it eliminated the team’s
reliance on the single, assigned project tester,
who would have otherwise constituted a ma-
jor bottleneck. This proved highly important
because—for reasons unrelated to the proj-
ect—the tester was replaced twice during the
first three releases. Second, because developers
were responsible for writing tests for each new
feature, their test-awareness increased and
they prevented or quickly caught more edge
cases while they worked.

Finally, because people knew that they were
required to test their specifications and code,
they designed them for testability.11 That is,
where appropriate, developers added special
features or design considerations to the code
to make hard-to-test features testable. Such
coordination tasks are often difficult and ne-
glected when developers and testers work as
separate teams.

Product size = test size
Measuring progress is also crucial; the proj-

ect team tackled it by defining the project’s
product size metrics as the number of regres-
sion test steps run at each iteration.8 The
“running and tested features” metric12 in-
spired this approach. The project’s leaders
chose this approach for two reasons. First, be-
cause test size is more highly correlated with
complexity than are lines of code or specifica-
tions, it’s a better approximation of product
size. Second, such a metric sends a strong mes-
sage to the team: only features that have full
regression testing at each iteration are counted
as delivered product size.

Reaching and increasing the product size
metric is a nontrivial team goal; in this case,
the team performed it successfully in 12 out of
the 13 iterations we studied. Figure 1 plots the
product size metric over this period of time.

Untested work = no work
Another related factor is how the organiza-

tion promotes developer testing. This is a ma-
jor issue in shifting to agile development, par-
ticularly in organizations where testing is
poorly perceived. The key to success is similar
to that with product size metrics. In this case,
untested work equals no work—in all chan-
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nels and under all conditions. The case is sim-
ilar for task completion. At each iteration
summary, the team reviews the iteration’s
tasks to investigate incompletion or time esti-
mation errors. The team considers tasks lack-
ing full written tests as incomplete—that is,
failures—even if they already “work” and
were presented to the customer.

In response to a written questionnaire ad-
ministered after two releases, over 90 percent
of team members ranked acceptance and sys-
tem tests as “highly important”; the remaining
10 percent ranked them as “important.” Fur-
thermore, 33 percent were either “interested”
or “very interested” in taking a leading role in
acceptance testing, and almost 60 percent
were “interested” in leading system testing.

Working with professional testers
In agile projects, everyone on the team fully

tests their own work. So, professional testers
add value not through more testing, but by
writing some of the developers’ tests, thus
freeing them to code more new features. Pro-
fessional testers can also create better test sce-
narios, although this ability varies greatly
among individuals. Using professional testers
nonetheless raises two key challenges for or-
ganizations adopting agile development: test-
ing bottlenecks and coordinating the testing
work among testers and programmers.

Easing bottlenecks: Code less, test more
Dealing with testing bottlenecks is rela-

tively straightforward: developers simply code
less and test more. Figure 1 illustrates this,
comparing the product-size metric points at-
tained by tests that the entire team ran to the
points attained by the team’s testers alone. The
graph lines show the various phases the proj-
ect went through. At first, only the tester was
running tests. This became impractical within
a few weeks as the software grew in size; at
that point, most tests were handed over to
other developers. The only iteration in which
the total size decreased was when the tester
was unexpectedly removed from the team
(owing to an emergency in another project).
However, the team recovered and took over
testing the following week. Later, for the third
release (3.3 in figure 1), a new tester joined the
team and tester-generated points increased
again. In this process, the team proved capable
of coping with any tester availability—tester

absence affected development speed but didn’t
compromise full, continuous testing.

Encourage interaction over isolation
Initially, the project tester didn’t work with

other team developers but instead wrote
cross-feature tests and automated the cus-
tomer-defined use cases. The testing person-
nel manager—who wasn’t an XP team mem-
ber—required this separation for two
reasons.

First, common wisdom states that testers
must be independent of programmers to pre-
vent implementation details from affecting
their test designs. This contamination argu-
ment maintains that testers can’t write ade-
quate tests for a feature if a programmer has
already explained the testing requirements.
Second, one of testing’s aims is to verify that
detailed specifications are up-to-date. So,
testers traditionally write tests according to
the specifications, not to what someone has
“unofficially” told them. An unspecified fea-
ture is viewed as a kind of bug.

These two claims form many QA profes-
sionals’ core objection to agile testing.13 The
claims target basic XP principles—whole-team
and developer testing, in particular—and in-
sinuate that they’re unsuitable for producing
quality software. The counterargument isn’t
that these claims are false but simply that the
alternative is better overall. Published reports
on professional testers’ experience in agile
teams support this.4,14,15 They also emphasize
that testers must change their mind-set if
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they’re to successfully integrate into an agile
team; our findings support this as well.

In our study, testers working independently
found many minor mismatches between writ-
ten specifications and the system, and few ac-
tual bugs. The mismatches were tracked and
resolved as bugs; they were usually trivial, tak-
ing only minutes to fix. However, because de-
velopers tested each task as they wrote it, few
actual system bugs remained at this stage. So,
working with testers in this way was highly in-
efficient: in one extreme case, the tester found
only two actual bugs after three weeks of test-
ing a complex feature.

These results reassured the project’s man-
agement that developers could effectively test
the software themselves. In turn, the organiza-
tion decided to integrate the tester into the
project team. The tester began to work on
tasks with pairs of developers, writing tests in
parallel with coding after they had all in-
spected the feature’s specifications and gener-
ated a set of test cases accordingly. Although
we haven’t yet collected data on the method’s
effectiveness, it does seem clear that, in this
agile project, continuous interaction is the
more productive choice.

Activity planning
Planning for quality activities involves

time-allocation challenges in feature testing,
regression testing, and repairing defects.

Integrate feature testing and coding
In agile development, feature testing is al-

ways an integral part of each feature’s devel-
opment and time estimation. Testing and cod-

ing time are usually equal: if feature A is esti-
mated to require five hours of specifications
and 10 hours of coding, for example, it would
typically be allocated 10 hours for writing and
running tests. This estimation can change on a
per-task basis, such as when a team knows in
advance that a given feature is more difficult to
test than others or requires refactoring of exist-
ing tests. As a rule, features are time-estimated
to completion. Feature A, for example, would
be planned as a single, 25-hour task. This again
stresses that no task is considered complete un-
til its tests are written and running.

Regression testing: Divide and conquer
In our study project, regression testing was

considered as global (rather than personal)
overhead and allocated as a global time period.
This works because regression tests are usually
run on each iteration’s last day, with the testing
work divided among team members. Figure 2a
plots the net number of hours for running and
maintaining regression tests in each iteration.
As the figure shows, during the first two itera-
tions, the variance between iterations was small
enough to make this global approach the cor-
rect choice. The net time required of the entire
team at each iteration was about half a day; this
changed over time, owing mainly to substantial
growth in team size in the third release.

Allocate bug-fix time globally
The project also allocated a global time

pool for fixing defects; experience and avail-
able data thus far indicates that this was a
good choice for two reasons. First, estimating
the time to fix a defect is extremely difficult
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because defect complexity is unpredictable. At
the same time, as figure 2b shows, the law of
averages applies here, indicating that we can
reasonably predict the time required for fixing
all defects in a forthcoming iteration. We can
also adjust this much-more-stable estimate at
each iteration’s planning game according to
the number of open defects at the time (see,
for example, iterations 2.1 and 2.4).

Second, planning defect resolution as an in-
dividual task results in high overestimates. In
the single iteration that allocated time on a
per-defect basis, each defect was estimated to
require at least four hours, with the highest
single defect estimate being nine hours. Such
overestimation occurs because a single, unex-
pectedly complex defect might well require
that much time. But, as the data shows, it’s
highly improbable that many unrelated defects
will simultaneously require that much time.

Defect management
Defect management involves two major

challenges: managing workflow and selecting
and scheduling the defects to fix.

Use a team-centered 
defect-management approach

Defect management workflow is much sim-
pler in agile projects than in traditional ones in
three ways:

■ Anyone can open a defect (once its devel-
opers declare that the defective feature is
“done,” it’s considered a defect).

■ Anyone can close a defect, after fixing it
and running the related tests.

■ Anyone who finds a defect also assigns it
to someone to be fixed.

Team members routinely view their own de-
fects list and fix the defects. If they’re assigned
a defect by mistake—for example, a defect re-
lated to a subject they know nothing about—
they can reassign it. This eliminates a sizable
overhead from team leaders,4 who tradition-
ally are responsible for this task. For example,
the team leaders on two comparable tradi-
tional projects at the IAF estimated that they
devote one to three hours per week to defect
management, compared to zero for the agile
project’s leaders.

Team-centered, XP-based development is
key to enabling project members to successfully

assign defect fixes to each other. XP’s whole-
team and sit-together practices require that
everyone, including the tester, sit in the same
room. The informative-workplace practice re-
quires that everyone participate in the planning
game and daily stand-up meetings, so people
know each other and everyone’s respective
knowledge areas. Given this, team members
can usually identify the right person to fix a
given bug. This doesn’t occur when the testing
team is separate from the development team.

The same practices also reduce false defect
reports. Such reports either duplicate existing
defect reports or are created owing to devel-
oper misunderstanding. During our study pe-
riod, only 29 false defects were recorded, con-
stituting 7.5 percent of all defects. Sixteen of
these false defects were recorded in a single it-
eration (2.3), in which the tester worked sepa-
rately from the team. These numbers are low;
during the same periods, our two reference
projects at the IAF reported four to eight times
more false defects.

Fix defects as soon as possible
Letting team members assign bug-fixing re-

sponsibilities requires that the average bug-fix
time is short—in this study, it was slightly over
an hour (see figure 3). This speed is crucial to
ensure that precise load balancing of bugs
among team members is unimportant. When a
bug could require a day or more to fix, team
leaders must assign such work to prevent bot-
tlenecks and ensure that deadlines are met. In
this case, the average bug-fix time remains
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relatively constant, even as the application
grows significantly in size and complexity. This
agrees with the flat cost-of-change curve,1 a
central benefit of agile development.

The average time is based on developer re-
ports of the total net time they spent working
on defects (developers complete daily reports
on time spent on each task). The team
achieved this very low average—an order of
magnitude or more lower than most projects,
including those in the same organization—for
two reasons. First, there’s little overhead to re-
produce defects because testers and program-
mers work on the same baseline. Second, team
members fix defects as soon as they’re found,
when the relevant code is still fresh in the de-
velopers’ mind.

In traditional projects, a feature-complete
version is sent to the QA group, which sends
back a large stream of defects of varying im-
portance. Because the effort to repair defects
always greatly exceeds the available resources,
a lengthy process of prioritizing defects begins.
The team fixes the most urgent defects first,
during time slots preallocated for this activity
during project planning.

Agile projects replace this process with a
simple rule: fix every defect as soon as you dis-
cover it. This is required because the team re-
leases software to its customers at every itera-
tion, and releases shouldn’t, in principle,
contain known bugs. In our case study, the
rule was that defects should be fixed as soon
as possible—this does not necessarily mean im-
mediately, however, simply because the right

person to fix a defect wasn’t always immedi-
ately available. In addition, teams sometimes
find defects during regression testing, at the
end of an iteration, that they can’t fix in time.
Given this, our project’s team devoted the be-
ginning of each iteration to fixing the previous
iteration’s open defects.

Figure 4 shows a defect’s average longevity
over time. During the first four iterations, the
team fixed all defects within a week (usually at
the start of the next iteration after their dis-
covery). The team relaxed the pace slightly in
the next two releases. However, the average
remained low and relatively constant relative
to traditional projects (in the organization and
elsewhere). Moreover, these averages relate to
all defects, not only critical or urgent ones.

Fixing all defects as soon as possible has
several advantages. First, as we discussed ear-
lier, defects require far less time to fix with this
approach. Second, working on a clean and
highly stable code base makes new develop-
ment faster. Third, besides avoiding the over-
head of prioritizing and planning defect fixes,
this rule avoids unpleasant customer negotia-
tions over which defects to solve. Such negoti-
ation is often forced upon both sides when a
project’s delivery date approaches and—because
traditional development projects test late in
the process—it becomes clear that not all de-
fects will be fixed before the deadline. In the
project studied here, the team fixed all defects
routinely and, given its perceptions about
product quality, planned no “stabilization pe-
riod” toward the official delivery date.

Another significant difference from com-
mon practice that often surprises traditional
practitioners is that agile projects have no con-
cept of defect severity. This relieves developers
of both the pressure to stabilize the system just
before the delivery date and the need to coerce
the customer into dictating which defects to
fix (and which to not fix). So, the only consid-
eration regarding a given defect is whether to
fix it. If the answer is no, the defect isn’t
opened. If the answer is yes, it’s fixed when it’s
cheapest to do so—right away.

O ur study’s data and analysis are useful
both to practitioners wishing to estab-
lish new agile teams and to researchers

looking for high-quality, real-world data. In
addition to illustrating applicable tactics, our
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data shows that agile testing works. The proj-
ect team cut by an order of magnitude the time
required to fix defects, defect longevity, and de-
fect-management overhead. Even on such a
large-scale project, the team achieved full re-
gression testing at each iteration and developer
testing. It also resolved all defects over a sig-
nificant time period that included both person-
nel changes and team growth.

Implementing the presented process re-
quired a new mind-set at personal and organi-
zational levels, and it remains a challenge to
expand its adoption to other IAF projects.
One key motivator for such expansion, in the
IAF and industry-wide, is the continued publi-
cation of quality data on large-scale agile proj-
ects. We strongly encourage and call for fur-
ther investigation on these issues, and, in
particular, on long-term agile projects, proj-
ects spanning multiple coordinating teams,
and projects that are concurrently developing
and maintaining production systems.
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