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We present a multivariate analysis technique called Co-plot that is especially suitable for few samples of many 
variables. Co-plot embeds the multi-dimensional samples in two dimensions, in a way that allows key variables 
to be identified and relations between both variables and observations to be analyzed together. When applied to 
the workloads on parallel supercomputers, we find two stable perpendicular axes of highly correlated variables, 
one representing individual job attributes and the other representing multi-job attributes. The different 
workloads, on the other hand, are rather different from one another, and may also change over time. Synthetic 
models for workload generation are also analyzed, and found to be reasonable in the sense that they span the 
same range of variable combinations as the real workloads. However, the spread of real workloads implies that 
a single model cannot be similar to all of them. This leads us to construct a parameterized model, with 
parameters that correspond to the two axes identified above. We also find that existing models do not model the 
temporal structure of the workload well, and hence are wanting for tasks such as comparing schedulers, and that 
the common methodology for load manipulation of workloads is problematic. 
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1. INTRODUCTION  

A characterization of the workload a system will face is necessary in order to evaluate 
schedulers, processor allocators, and make many other design decisions. Two kinds of 
workloads are typically used: A trace of a real production workload, or a synthetic 
workload produced by a statistical model. For concreteness, we will consider traces and 
models of parallel supercomputer workloads in this paper. 

Production logs have the advantage of being more realistic, as they are a direct 
recording of a workload that has occurred in practice. However, they may suffer from 
various problems. For example, the trace may contain errors or otherwise unreliable data: 
mysterious jobs that exceeded the system's limits, undocumented downtime, dedication 
of the system to certain users, and patterns of activity that are not generally representative 
[Koldinger et al., 1991;  Windisch et al., 1996; Downey and Feitelson, 1999; Feitelson 
and Tsafrir, 2006]. In addition, different workloads can be highly variable. Such 
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problems limit the degree to which we can draw conclusions from past workloads to 
predict future ones, or infer from one installation – one hardware configuration, user 
base, and scheduler – about other ones. It is therefore necessary to map invariants that are 
common to multiple workloads and can be relied upon to be representative. 

The alternative to using production traces is to generate synthetic models [ Ferrari, 
1972; Calzarossa and Serazzi, 1993], and several such models have been proposed for 
parallel workloads [Feitelson, 1996; Downey, 1997; Jann et al., 1997;  Cirne and Berman, 
2001; Lublin and Feitelson, 2003]. Such models are typically based on measurements of 
real workloads [ Agrawala et al., 1976; Feitelson and Tsafrir, 2006]. Models have the 
advantage over production logs of putting all the assumptions "on the table", and of being 
more flexible, by allowing their user to easily vary the model's parameters. 

The problem with models is that they need to be representative of real workloads. We 
compare eleven production workloads with the generated output of six statistical models, 
and test how the models measure up to reality. Our production logs include at least 
25,000 jobs and are at least six months long, to ensure that they represent real usage in a 
production environment at some supercomputing center. This is the first time a data set of 
this size and diversity has been analyzed, enabling us to present new insights about the 
commonalities and differences among workloads in production sites. 

Based on our analysis of real parallel workloads, we try to identify desired properties 
of workload models: Which variables should form the backbone of the model? What can 
we tell about the distributions of these variables? What can we tell about the correlation 
of these variables and other variables? Can a single model represent all observed 
workloads? And how should the model be adjusted to match a desired level of load, 
number of processors, and so forth? 

In order to reach the answers, we use a new statistical method called Co-Plot, which 
is well suited for situations in which few observations but many variables about them are 
available. Co-Plot works by mapping the observations into a 2-dimensional space, such 
that relative distances are preserved, and that key variables can be identified with 
different directions.  We find that for our data such a mapping is indeed possible, 
indicating that a 2-dimensional model should be sufficient.  Based on correlations 
between the different variables, we can assign meanings to the two axes that define such 
a model: one axis represents the properties of single jobs (e.g. its parallelism and runtime), 
while the other represents the properties of the workload as a whole (e.g. the arrival rate).  
We then select a representative variable from each axis, and show how to construct a 
parametric model that can fit a desired location in the 2-dimensional workload space. 

 Section 2 presents Co-plot, and Section 3 presents the data set used for the analysis. 
Sections 4 to 8 analyze the production logs from several angles, leading to an evaluation 
of the synthetic models available today in Section 9, and considerations for building new 
models in Sections 10 through 12. Limitations are mentioned in Section 13. Conclusions 
and future work are presented in Section 14. 

 
2. CO-PLOT 

Classical multivariate analysis methods, such as cluster analysis and principal 
component analysis, analyze variables and observations separately. Co-Plot is a new 
technique which analyzes them simultaneously. This means that we'll be able to see, in 
the same analysis, clusters of observations (workloads in our case), clusters of variables, 
the relations between clusters (correlation between variables, for example), and a 
characterization of observations (as being above average in certain variables and below in 
others). The technique has been used before mostly in the area of economics [Lipshitz 
and Raveh, 1994; Raveh, 2000]. 

Co-plot is especially suitable for tasks in which there are few observations and 
relatively many variables – as opposed to regression based techniques, in which the 



number of observations must be an order of magnitude larger than the number of 
variables. This is crucial in our case, in which there are few workloads (eleven production 
ones and six synthetic ones), and a similar number of variables. We denote the number of 
observations by n, and the number of variables (the dimensionality) by p. 

Co-plot's output is a visual display of its findings. It is based on two graphs that are 
superimposed on each other. The first graph maps the n observations into a two-
dimensional space. This mapping, if it succeeds, conserves relative distance: observations 
that are close to each other in p dimensions are also close in two dimensions, and vice 
versa. The second graph consists of p arrows, representing the variables, and shows the 
direction of the gradient for each one. 

Given an input matrix Yn×p of p variable values for each of n observations (see for 
example Table 2), the analysis consists of four stages. The first is to normalize the 
variables, which is needed in order to be able to relate them to each other, although each 
has different units and scale. This is done in the usual way. If 

jY  is the j’th variable’s mean, 
and Dj is its standard deviation, then Yij is normalized into Zij by: 

jjijij /)(: DYYZ −=  (1) 

In the second stage, we compute a measure of dissimilarity Sik ≥ 0 between each pair 
of observations (rows of Zn×p). A symmetric n×n matrix is produced from all the pairs of 
observations. In our analysis we use city-block distance – the sum of absolute deviations 
– as the measure of dissimilarity: 
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In stage three, the n observations are mapped by means of a multidimensional scaling 
(MDS) method from the original p-dimensional space into a two dimensional Euclidean 
space, such that 'close' observations (with a small dissimilarity between them) are close to 
each other on the map, while 'distant' ones are also distant on the map. Note, however, 
that we are mainly interested in relative distances. This can be expressed as a relationship 
between the map distances dik (which are just the Euclidean distance in 2D) and the 
corresponding dissimilarity metrics Sik, where we require that 

Sik < Slm  if and only if  dik < dlm 
The MDS we use is Guttman's Smallest Space Analysis, or SSA [Guttman, 1968]. 

SSA is an iterative mapping technique, in which the need for additional iterations is 
guided by the coefficient of alienation Θ. The smaller it is, the better that the mapping 
reflects the original dissimilarities, and values below 0.15 are considered good. To 
evaluate Θ we first evaluate another metric µ which directly measures the correlation 
between the dissimilarity measures and the map distances: 
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Thus µ can attain the maximal value of 1. This is then used to define Θ as follows: 

21 µ−=Θ  
 (4) 

This functional form does not decrease much for mediocre values of µ, but drops 
sharply when µ approaches 1, so it is only low for very good correlations. Full details of 
the SSA algorithm are given in [Guttman, 1968]. It is a widely used method in social 
sciences, and several examples and intuitive descriptions can be found in [Maital, 1978]. 



If the third stage results in a high coefficient of alienation, then the data does not fit 
well into two dimensions, and a different technique is required. On the other hand, if the 
coefficient of alienation is low, we know that the 2D map indeed captures the salient 
features of the data. 

In the fourth stage of the Co-plot method, p arrows are drawn on the two dimensional 
Euclidean space obtained in the previous stage. Each variable j is represented by an arrow 
emerging from the center of gravity of the n points. The direction of each arrow is chosen 
so that the correlation between the actual values of the variable j and their projections on 
the arrow is maximized. Therefore, observations with a high value in this variable should 
be in the part of the space the arrow points to, while observations with a low value in this 
variable will be on the other side of the map. The length of the arrow is proportional to 
this correlation. 

As a result of this construction, arrows associated with highly correlated variables 
will point in about the same direction, while arrows associated with uncorrelated 
variables will tend to be orthogonal. Thus the cosines of angles between these arrows are 
approximately proportional to the correlations between their associated variables. 

The quality of the graph generated by the Co-plot technique is assessed by two types 
of measures, one for stage 3 and another for stage 4. In stage 3, a single measure – the 
coefficient of alienation – is used to determine the quality of the two-dimensional map. In 
stage 4, p separate measures – one for each variable – are given. These are the 
magnitudes of the p maximal correlations, which measure the goodness of fit of the p 
regressions. These correlations help in deciding whether to eliminate or add variables: 
Variables that do not fit into the graphical display, namely, have low correlations, should 
be removed, because they do not relate well to the principal features of the data as 
identified by the 2D mapping. The removal of a variable requires a re-computation of the 
Co-Plot, since it affects the earlier stages (SSA) as well. Note that since each variable’s 
arrow is computed separately, there is no need to fit all the 2P subsets of variables as in 
other methods that use a general coefficient of goodness-of-fit. The higher the variable's 
correlation, the better the variable's arrow represents the common direction and order of 
the projections of the n points along the axis it is on. 

 
 

3. THE DATA SET 

Traces of real production workloads were available from the Parallel Workloads 
Archive [Feitelson, 1999]. The full data is given in Table 2. The traces are from ten 
machines, where the San Diego Paragon is analyzed as two logs – one for 1995 and one 
for 1996; the two logs identify users differently, and so can’t be safely merged. 

Table 1: Parallel Computers in our data set 
 Log  Location Machine Type Period 
1 NASA NASA Ames iPSC/860 Oct 1993 – Dec 1993 
2 PAR5 San Diego Supercomputing Center Paragon Dec 1994 – Dec 1995 
3 PAR6 San Diego Supercomputing Center Paragon Dec 1995 – Dec 1996 
4 BLUE San Diego Supercomputing Center Blue Horizon Apr 2000 – Jan 2003 
5 SDSP San Diego Supercomputing Center IBM SP/2 Apr 1998 – Apr 2000 
6 CTC Cornell Theory Center IBM SP/2 Jun 1996 – May 1997 
7 KTH Swedish Institute of Technology IBM SP/2 Sep 1996 – Aug 1997 
8 LACM Los Alamos National Lab CM-5 Oct 1994 – Sep 1996 
9 O2K Los Alamos National Lab Origin 2000 Nov 1999 – Apr 2000 
10 LLNL Lawrence Livermore National Lab Cray T3D Jun 1996 – Sep 1996 
11 OSC Ohio Supercomputing Center Linux Cluster Jan 2000 – Nov 2001 

 



The following variables were measured for each workload: 
1. The number of processors in the system. 
2. Number of jobs per day. Since some logs are longer than others, it is required to 

normalize the total number of jobs in the log by the log’s duration, to obtain a 
comparable statistic. 

3. Runtime Load, or the percent of available node seconds that were actually allocated to 
jobs. This is calculated as the sum over all jobs of each job’s runtime multiplied by its 
number of processors, divided by the product of the number of processors in the 
machine multiplied by the log duration. 

4. CPU Load, which is the percent of actual CPU work out of the total available CPU 
time during the log’s lifetime. CPU times are the part of runtime in which the job 
actually processed. 

5. Number of users per thousand jobs. This measures the number of unique users that 
used the machine, normalized by the total number of jobs that were executed. 

6. Number of executables per thousand jobs. Number of unique executables used on 
the machine, normalized as above. A lower number indicates more repeated requests to 
run the same executable. This data was missing from some logs, so it couldn’t be used 
in some of our tests. 

7. Runtimes of jobs. This is represented by the median and 90% interval of the 
distribution of runtimes. 

8. Degree of parallelism, i.e. the number of processors used by each job, again 
represented by the median and 90% interval of the distribution. 

9. Normalized degree of parallelism (median and 90% interval of the distribution). This 
gives the number of processors that would be used out of a 128-processor machine. It 
is calculated as the percent of available processors that jobs used, multiplied by 128. It 
enables the decoupling of conclusions about the effect of machine size and parallelism. 

10.Total CPU work over all processors of the job (median and 90% interval). 
11.Inter-arrival times (median and 90% interval of the distribution). 

As shown in [Downey and Feitelson, 1999], the average and standard deviation of 
some of these fields are extremely unstable due to the very long tail of the involved 
distributions. Removing the top 0.1% jobs from a workload, for example, could change 
the average by 5% and the CV by 40%. These findings follow similar ones in [Lazowska, 
1977], and mean that the very big jobs must never be removed from workloads as outliers. 
On the other hand, these extreme values are often the most suspect in terms of possible 
data errors (what do you do with a job that lasted more than the system is supposed to 
allow?). Therefore, it is preferable to use order statistics, such as the median and intervals. 
In our analysis, the 90% interval – the difference between the 95% and 5% percentiles – 
was used; the 50% interval was also tested, and gave virtually the same results. 

Since not all workload traces had all the required fields, missing values were 
approximated. These are all the assumptions that were made: 
1. In the NASA and KTH logs, total CPU work wasn't given and was approximated by 

the product of runtime and degree of parallelism. In the LLNL log, the opposite was 
done: The runtime was approximated by the total work divided by parallelism. 

2. If one of CPU load and runtime load were missing, the other of the two fields was 
used. This was done in the NASA, KTH and LLNL workloads. 

3. If the submit time of jobs was not known but the time the job started running (after 
possibly being in a queue) was, the inter-arrival time was based on this start time. This 
was necessary in NASA, LLNL and the interactive workloads. 
 
 



Table 2: Data of production workloads 
  CTC KTH LACM5 O2K LLNL NASA BLUE PAR5 PAR6 SDSP2 OSC 

Variable: Sign: 1 2 3 4 5 6 7 8 9 10 11 

Processors in Machine TN 512 100 1024 2048 256 128 1152 416 416 128 57 
Jobs per Day JD 233.76 83.83 279.32 885.65 183.82 459.59 255.41 209.66 104.45 99.84 119.20
Runtime Load RL 0.556 0.690 0.735 0.640 0.616 0.467 0.762 0.628 0.611 0.829 0.431 
CPU Load CL 0.464 0.690 0.478 0.391 0.616 0.467 0.627 0.667 0.685 0.734 0.590 
Users per KJobs UJ 8.56 7.51 1.06 2.76 7.18 1.63 1.87 1.28 1.55 5.95 2.63 
Executables per KJobs EJ 155.29 N/A 19.74 N/A 32.88 11.67 N/A N/A N/A 896.50 0.01 
Runtime Median Rm 946 847 68 569 36 19 210 25 174 318 383 
Runtime Interval Ri 57226 47861 9063 32243 9143 1170 21738 26535 29924 41583 64089 
Processors Median Pm 2 3 64 15 8 1 8 4 8 2 1 
Processors Interval Pi 37 31 224 127 62 31 128 63 63 48 5 
Norm. Procs. Median Nm 0.5 3.8 8.0 0.9 4.0 1.0 0.9 1.2 2.5 2.0 2.2 
Norm. Procs. Interval Ni 9.3 39.7 28.0 7.9 31.0 31.0 14.2 19.4 19.4 48.0 11.2 
CPU Work Median Cm 559 847 6 21 36 19 30 24 129 264 646 
CPU Work Interval Ci 54794 47861 3658 9624 9143 1170 15990 25788 29640 41079 92838 
Inter-Arrival Median Am 79 192 59 26 119 59 102 73 124 135 64 
Inter-Arrival Interval Ai 1487 3810 1356 357 1660 446 1256 1786 3838 3823 2496 

Several other variables were also computed and tested, but removed from the rest of 
this paper once we found out that they had consistent low correlations. The removed 
variables were: 
1. The un-normalized forms of number of jobs, users, and executables. 
2. The duration of each log. 
3. The percent of completed jobs, and the percent of cancelled jobs. 
4. A measure of the processor allocation flexibility of each machine. 
5. A measure of the scheduler’s flexibility and sophistication on each machine. 
6. The means and standard deviations of the runtime, parallelism, CPU work and inter-

arrival time. 
 

4. PRODUCTION WORKLOADS: OBSERVATIONS 
Running the Co-Plot algorithm on a given data set is done in several iterations. At 

first, all observations and variables are used. Then outlier observations and low-
correlation variables are removed, and runs on different combinations of the remaining 
data are done as well. Each run produces a different plot, which enables the analyst to see 
which observations are stable, and which tend to change. As an example, the two figures 
in this section and the next use different sets of variables. The conclusions presented in 
this paper are only ones that proved stable. 

Figure 1 includes all the observations – none of them is an extreme outlier. The 
variables used are those that had the highest correlations, which facilitates the creation of 
a slightly more accurate 2-D map of the observations (the full set of variables will be 
analyzed in the next section). The coefficient of alienation of this Co-Plot is 0.10, and the 
average correlation of variables is 0.85. These are generally considered as excellent 
goodness-of-fit values [Borg and Groenen, 1997]. 

The most obvious conclusion that can be drawn about the logs from this map is that 
they are not clustered. Architecture does not imply proximity – the CTC, KTH and SDSP 
logs are all IBM SP2 machines of similar size. Neither duration nor the year in which 
logs were recorded affects the distance between them. Even the two paragon logs are not 
as close as could be expected, which means that the workload changed over time. The 



location has a negligible effect as well – the SDSP, PAR5, PAR6 and BLUE logs are all 
from the San Diego Supercomputing Center, and are in the same vicinity; however, the 
Los Alamos CM5 and O2K log are far-off from one another. Also, the San Diego logs 
range over six years (1995-2000 inclusive), during which many other factors could 
change as well. 

 

 
Figure 1: Co-plot output of all production workloads 

See Table 2 for variable signs 
Since Co-plot analyzes observations and variables together, it is not only possible to see 
clusters of observations, but also to identify their nature. For example, the OSC and CTC 
logs are characterized by a relatively high number of different users (UJ), very long 
runtimes (Rm) and high total CPU work (Cm), but relatively little parallelism (Pm); 
indeed, the OSC machine had only 57 nodes in total, and CTC has an abnormally high 
fraction of serial jobs. Such facts are deduced in Co-plot from the arrows: The projection 
of a point on a variable's arrow should be proportional to its distance from the variable's 
average, where above average is in the direction of the arrow and vice versa. 

In the same manner, the LACM workload (upper left) has a very high degree of 
parallelism, but below average runtimes. The Blue Horizon has similar characteristics, 
but not as extreme. The Paragon 1995 log is near-average, but in 1996 the workload there 
has a high CPU load (CL), accompanied by high inter-arrival times (Am) on one hand 
and a low number of jobs (JD) on the other. The LLNL and the SDSP logs are similar to 
the PAR6 log – but the SDSP has more users, higher runtimes, and more CPU work, 
while the LLNL log has smaller values on all these variables, but higher parallelism. The 
KTH log has similar attributes as the SDSP log, but taken to the extreme. The O2K log 
stands out with many jobs, very low (relatively) inter-arrival times, and a low CPU load. 

Note that although we can see that the workloads are ‘far’ from each other, and use 
terms such as ‘high’ and ‘low’ values, this notion of distance is always relative to the 
other observations in this analysis. This happens because all variables in a Co-Plot 
analysis must be normalized – otherwise we can’t compare relations between them – and 



means that we should beware of attaching real distance to Co-plot’s output. On the other 
hand, this observation map, especially because we have no outliers, defines an intuitive 
notion of the “parallel workloads space”. Since our sample includes a variety of 
architectures, locations, and time frames, the borders of this spaces – as defined by the 
minimal and maximal values in table 2 – describe what a “normal” parallel workload is like. 

 
5. PRODUCTION WORKLOADS: VARIABLES 

The following figure adds to the one from the previous section four more variables: 
The total number of nodes (TN), the runtime load (RL), and the median and interval of 
the normalized number of processors (Nm and Ni). The coefficient of alienation is 0.10, 
and the average of correlations is 0.80. Three variables had correlations below 0.70 – the 
median of normalized parallelism (Nm), the runtime load (RL), and the normalized 
number of users (UJ). Removing these variables had no effect on the Co-Plot, so they do 
not interfere; but conclusions about them should be made with caution. 

The map tells a lot about the types of distributions that should be used for modeling 
workloads. The runtimes, the degree of parallelism, and total CPU work exhibit a high 
positive correlation between the median and interval of the distribution. This means that 
systems where jobs have higher runtimes and parallelism also exhibit a more varied (or 
more probably, skewed) stream of requests. In some cases this may occur because 
common administrative tools, such as limiting the maximal runtime, affect both the 
median and interval of the observed runtime in the same way.  

Inter-arrival times and the normalized parallelism, however, may require a different 
treatment. Although their median and interval are positively correlated, the correlation is 
not full. Repeated analyses of these variables shows, that in some plots their correlation is 
less than that shown in Figure 2, although it’s always positive. This is important for 
building models – all models include inter-arrival times, and every model that takes the 
number of processors of the target machine as a parameter needs to take this parameter’s 
effect into account. 

 
Figure 2: Co-plot output of all production workloads using all variables 



Perhaps more important than analyzing individual variables, the Co-Plot analysis 
enables us to understand the correlations between all the variables at once, and to define 
clusters of variables and the relations between them. In order to do so, Figure 3 includes a 
subset of the arrows from Figure 2 (those that appear in Figure 1), plus two imaginary 
perpendicular dotted axes, to make our explanation easier.  

 
Figure 3: Variable arrows from Figure 1 

The two dotted axes are perpendicular – meaning not correlated in the plot. All the 
variables along each axis are highly correlated – for example, the CPU load (CL) and 
normalized number of jobs (JD) are very highly correlated, although that correlation is 
negative. This correlation does not have to be linear – note the definition of distance and 
alienation from section 2 – but it means that the variables grow together, by some 
relationship. The two axes were drawn since most of the variable arrows fall very close to 
one of them, and they define the two main variable clusters of this data set: 
1. The Multiple Jobs Axis – includes the number of jobs per day (JD), the median 

and interval of the inter-arrival times (Am and Ai), and the CPU load (CL). The 
interval of the normalized degree of parallelism (Ni) and the total number of nodes 
in the machine (TN) are also members of this axis (this conclusion is drawn from 
other runs of the analysis as well), although their correlation with the axis is not full. 

2. The Single Job Axis – includes the median and interval of runtimes (Rm and Ri), 
the median and interval of total CPU work (Cm and Ci), and the median and 
interval of parallelism (Pm and Pi). The normalized number of users (UJ) also 
belongs to this cluster; its correlation to the axis is not full, but actually stronger in 
most runs than it appears in Figure 3. 

The runtime load (RL) and the median of normalized parallelism (Nm) seem to be 
between the two axes. However, as mentioned above, these two variables have a low 
correlation in this Co-Plot, so it’s hard to conclude anything about them. Since the runtime 
load is an important parameter in many studies in this area, it should be noted that the CPU 
load – which exhibits high correlation in this Co-Plot – can possibly be used to represent 
it, as the two variables are highly correlated, in the usual linear sense of correlation. 

The names of the two axes reflect the fact that one axis gathers the variables that 
define a single job, while the other axis gathers variables that define the relations between 
jobs. Although we are making a generalization here, as some important variables are not 
fully correlated with either axis, we can still say that these two axes define the two-
dimensional workload space. The low coefficient of alienation (0.10 and below) achieved in 



our analyses means that the workloads space can be hosted in a 2-D space without much 
loss of information. The two axes we identified clarify what each dimension stands for. 

The Single Job Axis provides us with the following information. Logs with high 
runtimes (on average, relative to other logs) also have high total CPU work, and in 
contrast have low parallelism. This is true for both the median and the interval of the 
three distributions involved. Also, logs with high runtimes have more users per job. This 
is very important, because the number of users is one of the only variables that can be 
estimated in advance, before a system is built. The strong correlation between the number 
of users and the medians and intervals of runtimes or degrees of parallelism means that 
these variables too can now be predicted in advance. This is why the number of users was 
normalized by the number of jobs, and not by the job’s duration (like the JD variable): 
this was required in order to decouple it – i.e. make it uncorrelated – to the Multiple Jobs 
Axis. The number-of-users-per-day (UD) variable was also computed: it enters the Co-
Plot with a high correlation, and is usually drawn between the two axes. 

The Multiple Jobs Axis also provides valuable information about its variables. First, 
logs with many jobs per day (JD) are usually found on machines with a lot of processors 
(TN). The TN variable is not fully correlated to this axis, since – as expected – it has a 
small positive correlation with parallelism (it is expected that machines with more nodes 
will have higher parallelism, although this effect seems to be weak). As expected, logs 
with many jobs per day have very low inter-arrival times (more jobs over the same time 
frame must be temporally closer to one another). On the other hand, they also have very 
low CPU loads and runtime loads, which is counterintuitive. 

The median and interval of the normalized number of processors are between axes. 
The median of the normalized parallelism has an obvious positive correlation to the (un-
normalized) parallelism, and is uncorrelated to the total number of nodes in the machine 
(as expected by its definition). The interval is somewhat closer to the Multiple Jobs Axis, 
but the correlation is far from full, so it’s safest not to conclude anything about it. 

One should be careful not to misinterpret these findings – note that they relate to 
whole workloads, not jobs. For example, the negative correlation between the degree of 
parallelism and runtime means that systems with high average parallelism exhibit lower 
runtimes, not that jobs that use many processors are shorter (the opposite of which was 
indicated in [Feitelson and Rudolph, 1998; Downey and Feitelson, 1999). The reason for 
this may be, for example, that systems with more processors tend to enforce tighter 
runtime limits on jobs. This would fit in with the conjecture that systems with fewer 
processors may try to compensate for this by offering more flexible policies. 

 
6. FLURRIES 

A flurry [Tsafrir and Feitelson, 2006] is a burst of very high activity by a single user. 
In contrast to normal active work, a flurry is an extreme case in which the load created by 
a user, over a short period of time, is orders of magnitude higher than usual, and affects 
the entire workload in a significant way. Sometimes the runtimes or CPU work used in a 
flurry is above the declared limits of the system, which makes them even more 
questionable. The following figure shows two examples of this phenomenon, both of 
which caused by an unusually high number of jobs by a user over a short period of time. 
On the right, from the SDSC SP2 log, a single user (out of 428 users) created a stream of 
jobs in one week, that is about seven times higher than the maximum number of jobs per 
week created by all other users, anytime in that log. On the left, from the LANL CM-5 
log, 3 out of 213 users create similar short-term streams of a very large number of jobs – 
five to six times the maximum of all other users during the log. 

As argued in [Feitelson and Tsafrir, 2006; Tsafrir and Feitelson, 2006], a workload 
model should in general not include flurries, since they are non-representative behavior, and 



should be modeled separately. Therefore, like any other case of outliers in a statistical data 
set, it is recommended to remove flurries from a data set before analyzing or modeling it.  

  
Figure 4: Jobs-per-week flurries in the LANL CM-5 and SDSC SP2 logs 

Table 3: Data of flurry-free production workloads 

  CTC OSC LACM5 O2K SDSP2 NASA BLUE PAR5 PAR6 
Variable: Sign: 1 2 3 4 5 6 7 8 9 
Processors in Machine TN 512 57 1024 2048 128 128 1152 416 416 
Jobs per Day JD 227.63 119.18 169.29 885.65 81.13 198.34 248.14 147.19 86.68 
Runtime Load RL 0.556 0.428 0.734 0.640 0.827 0.466 0.762 0.627 0.611 
CPU Load CL 0.464 0.583 0.477 0.391 0.732 0.466 0.627 0.666 0.685 
Users per KJobs UJ 8.79 2.63 1.75 2.76 7.32 3.78 1.92 1.82 1.87 
Executables per KJobs EJ 159.48 0.01 32.58 N/A 1103.21 27.03 N/A N/A N/A 
Runtime Median Rm 1114 382 414 569 237 86 219 38 207 
Runtime Interval Ri 57562 63952 11202 32243 47463 3716 22688 30478 31048
Processors Median Pm 3 1 32 15 4 4 8 8 8 
Processors Interval Pi 39 5 480 127 64 63 128 63 63 
Norm. Procs. Median Nm 0.8 2.3 4.0 0.9 4.0 4.0 0.9 2.5 2.5 
Norm. Procs. Interval Ni 9.8 11.2 60.0 7.9 64.0 63.0 14.2 19.4 19.4 
CPU Work Median Cm 669 645 64 21 170 86 35 39 156 
CPU Work Interval Ci 55184 92580 7826 9624 47102 3716 16545 30305 30765
Inter-Arrival Median Am 85 64 176 26 201 90 104 113 212 
Inter-Arrival Interval Ai 1527 2496 2048 357 4738 1217 1292 2467 4363 



 
Figure 5: Co-Plot of original and clean production workloads 

 
To examine the effect of non-representative behavior on our previous results, all 

variables were re-computed for the “clean” versions2 of each log we used, and the Co-
Plot analysis was repeated with the recomputed variables. Of all the logs we used, only 
KTH, LLNL, and O2K do not have a separate clean version. The NASA log didn’t have 
flurries, but was affected by a large number of system jobs which were not user-
generated behavior. The SDSC Paragon logs had both flurries and repetitive system 
scripts. All other logs had at least one flurry. 

Table 3 summarizes the data for all the cleaned affected logs. Figure 5 includes all the 
original production logs, all the cleaned logs, and all the variables used in Figure 1 except 
UJ (which was removed due to low correlation). The coefficient of alienation is 0.09, and 
the average correlation is 0.83. 

First, it is clear that cleaning the logs had no affect on our previous findings. The 
observations map and the variables map remain the same. The same results are also 
obtained when only the cleaned logs are used to build the plot – the cleaned logs appear 
very close to where the original logs were placed, and their interactions with all the 
variables remain essentially the same. This result was stable across many other runs and 
configurations, with different sets of variables, or mixed sets of cleaned and original logs. 

The cleaned logs are very close to their corresponding original logs in almost all 
cases. In the NASA, Paragon and San Diego SP2 logs, the cleaned logs move along the 
Multiple Jobs Axis (up and slightly to the right, opposite the direction of the jobs-per-day 
variable), because cleaning these logs involved removing many thousands of jobs. 
However, all the other features of the logs were retained. The Los Alamos CM5 cleaned 
log moved the farthest from its original – in this log, 79,329 out of its 201,387 jobs were 
part of three large flurries. So relative to the fact that almost 40% of the log’s jobs were 
                                                           
2 The parallel workloads archive, from which the logs were taken, includes both raw and 

cleaned versions.  



removed, its move on the observations map is not dramatic (the log remained at the same 
part of the map).  This may be explained by the fact that our variables are relatively stable 
and resistant to outliers, as they are based on the median and range of values, not on the 
mean and standard deviation [Lazowska, 1977; Downey and Feitelson, 1999]. 

 
7. WORKLOADS OVER TIME 

Logs of workloads from production work in recent years are the main source of data 
for evaluations of new system designs, which may be used for production work in the 
near future. But this practice is of questionable merit, since workload patterns may 
change with time [Hotovy, 1996]: users learn the system as time passes and adjust their 
behavior to maximize their benefits, administrators fine-tune the system continuously, 
and the dominant projects on machines may change every few months. 

Co-Plot allows us to test the degree to which workloads change with time, by 
mapping several consecutive periods of logged work on the same machine, and 
comparing them with each other and with other workloads. If recent workloads are 
indeed good predictors of the near future, we would expect the workloads from 
consecutive periods on the same machine to be mapped close to each other. Three 
workloads in our sample were long enough to test this – the LANL CM5 log, the SDSC 
SP2 log, and the Blue Horizon log were each divided into four equal periods. 

The resulting Co-Plot, including these twelve quarters and the original three full 
workloads, is shown in Figure 6. The variables used are the same as before, except the 
median of runtimes, which was removed due to a low correlation. The coefficient of 
alienation is 0.06, and the average correlation is 0.88. The data for the LACM and SDSP 
logs, which exhibit the highest variability, is given in Table 4. 

Table 4: Data production workloads separated to quarters 

 LANL CM5 SDSC SP2 
 Oct4-Mar5 Apr5-Sep5 Oct5-Mar6 Apr6-Sep6 Apr8-Sep8 Oct8-Mar9 Apr9-Sep9 Oct6-Apr0

Jobs per Day 395.91 347.35 142.02 206.34 161.31 105.80 76.70 51.12 
Runtime Load 0.719 0.817 0.679 0.724 0.737 0.810 0.883 0.888 
CPU Load 0.436 0.522 0.468 0.485 0.604 0.720 0.780 0.834 
Users per KJobs 2.22 2.93 7.99 5.73 14.54 21.97 25.46 45.49 
Executables per KJobs 13.55 31.63 117.26 106.90 2110.40 3312.17 2749.84 6020.51
Runtime Median 62 65 629 84 1061 115 206 231 
Runtime Interval 7028 7343 10961 11106 32629 46288 40300 45043 
Processors Median 64 32 64 128 1 4 4 8 
Processors Interval 224 224 480 480 32 56 64 64 
Norm. Procs. Median 8.0 4.0 8.0 16.0 1.0 4.0 4.0 8.0 
Norm. Procs. Interval 28.0 28.0 60.0 60.0 32.0 56.0 64.0 64.0 
CPU Work Median 3 7 122 8 1075 45 140 157 
CPU Work Interval 2923 3491 8595 7689 30724 46640 40755 43191 
Inter-Arrival Median 39 44 228 92 72 142 220 360 
Inter-Arrival Interval 833 992 2412 1888 2242 3422 4860 7868 



 
Figure 6: Co-Plot of three workloads divided to quarters 

As the plot shows, logs can change significantly over time. The Blue Horizon was the 
most stable, with the possible exception of the first seven months. This may be due to a 
slow start-up phase of the machine, or because only the first four months of the log 
include interactive jobs that were not submitted through LoadLeveler. The administrative 
change to the used queues that was performed towards the end of 2001 does not seem to 
have changed the workload in a noticeable way. 

In contrast, the LACM and SDSP logs show significant changes in workload between 
periods. Regarding the LACM log, a query with the person who provided the log from 
LANL indeed revealed that at the end of 1995 there was a significant change of policy 
regarding the CM-5. It approached the end of its life for grand challenge jobs, and most 
users were moved to a newer machine; only a few groups continued to use the CM-5 
during 1996, mainly to complete projects that were hard to port. 

In the SDSC SP2, the first period of six months is very different from the rest of the 
log. This may have been caused because the log collection began before the machine was 
fully operational, or before it was in wide use. From their location on the Co-Plot, it 
seems that in each subsequent period this machine experienced higher inter-arrival times 
and less jobs, while maintaining roughly the same CPU load, indicating that users 
submitted fewer but larger jobs. 

Apart from the evolution of each specific log, it is instructive to look at the entire map 
as well. The three full logs retain their place on the map as they were in the previous 
sections. Most variables remain the same as well – except the CL, Ci and Ri variables 
which moved close to one another, between the two axes. Another change in variables is 
the low correlation of the median of runtimes. This should not be taken to reflect on our 
previous findings, since this Co-Plot is based on only three logs, and so is highly biased 
towards their specific features. 

The above analysis indicates that workloads indeed change over time. It is dangerous 
to rely on the past to predict a future workload – even for the very same machine. It is 
therefore recommended to perform such an analysis for each new workload log that is 



obtained. This will reveal whether the log is homogeneous, and whether it contains time 
intervals in which work on the logged machine had unusual patterns. 

 
8. INTERACTIVE VERSUS BATCH WORKLOADS 

The work people do on parallel computers is usually divided into interactive jobs – 
very short test runs in which the user sits by the computer and waits for the result – and 
batch jobs, which may take hours or even days to complete. In two of the logs in our 
sample – the LANL CM5 and the SDSC Blue Horizon – we know exactly the type of 
each job, since different jobs were submitted using different queues, and these queues are 
well documented. Since it is obvious that interactive and batch jobs are very different 
from one another, it is interesting to plot them together, and learn how they are 
characterized, and how they should be modeled. Table 5 summarizes the data gathered 
for each job type in each log, for both the original and flurry-cleaned versions. 

The Co-Plot in Figure 7 is the result of running the above eight workloads, together 
with the original and cleaned versions of the LACM and BLUE logs. All the other logs 
were not used in this analysis, which therefore focuses on batch versus interactive logs 
only. This was reflected in the variables map, which is entirely new, both in terms of the 
variables themselves and in terms of the correlations between them. The Co-Plot has a 
coefficient of alienation of 0.06, and an average correlation of 0.92. The variables of jobs 
per day, users per job, and both the median and interval of inter-arrival times had low 
correlations, and were removed. The users-per-job variable, when added to the analysis, is 
drawn in the direct opposite direction of the CPU load (CL) variable, which means that they 
are negatively correlated (i.e. the interactive log portions have more users, and lower loads). 

 

Table 5: Interactive and Batch portions of workloads 
Original Logs Cleaned Logs 

LACM int LACM bat BLUE int BLUE bat LACM int LACM bat BLUE int BLUE bat
Jobs per Day 109.77 153.63 96.21 176.64 109.77 153.63 93.27 171.78 
Runtime Load 0.017 0.734 0.008 0.756 0.017 0.734 0.008 0.756 
CPU Load 0.003 0.475 0.004 0.624 0.003 0.475 0.004 0.624 
Users per KJobs 2.64 1.92 6.06 2.70 2.64 1.92 6.25 2.78 
Executables per KJobs 50.17 35.90 N/A N/A 50.17 35.90 N/A N/A 
Runtime Median 57 554 153 355 57 554 146 393 
Runtime Interval 268 11465 1688 34212 268 11465 1706 35408 
Processors Median 32 32 8 8 32 32 8 8 
Processors Interval 96 480 64 256 96 480 64 256 
Norm. Procs. Median 4.0 4.0 0.9 0.9 4.0 4.0 0.9 0.9 
Norm. Procs. Interval 12.0 60.0 7.1 28.4 12.0 60.0 7.1 28.4 
CPU Work Median 3 98 6 81 3 98 6 98 
CPU Work Interval 54 8465 876 26108 54 8465 881 26935 
Inter-Arrival Median 16 207 188 126 16 207 196 135 
Inter-Arrival Interval 281 2225 2117 1963 281 2225 2184 2010 



 
Figure 7: Co-Plot of interactive versus batch workloads 

The variables that remained have created a high-quality Co-Plot, in terms of 
goodness-of-fit. The observations map clearly separates the batch logs from the 
interactive logs, as expected. This also happens when the batch and interactive jobs are 
analyzed together with all the other logs that were used in figures 1 and 2: the interactive 
logs cluster together, and are so separated from the other (full and batch) logs that they 
seem to be outliers. Note that in this analysis, the full logs are mapped between their 
batch and interactive components, as may be expected. The full logs are closer to their 
batch logs in both cases, since the batch jobs are the majority (in terms of number of jobs 
and total work) in both cases. 

The variables map shows, again as expected, that the batch jobs are characterized by 
higher runtimes and total CPU work, as well as much higher loads (both runtime load and 
CPU load). The intervals of the runtime and CPU work are nearly orthogonal to their 
medians, rather than being highly correlated as before; this is probably because the 
intervals are higher in BLUE than in LANL, and the fact that only these two logs are used 
here. Likewise, parallelism is not a differentiator between batch and interactive logs, but 
it is a differentiator between LANL (higher parallelism) and BLUE (lower). 

The cleaned logs are very close to their origins, and do not affect any of the above 
results – using only the original logs or only the cleaned logs causes virtually no change 
in the resulting plot. 

 
9. SYNTHETIC WORKLOADS 

Having performed a detailed examination of the production logs, we now turn to 
inspect the statistical workload models that are currently available. As these models are 
each based on data from one or more logs, we would expect a joint Co-Plot of the logs 
and models to reflect this: each model should be close to the log on which it is based. The 
results are that this is not always the case, in part because a model may be based on more 
than one log. However, the models are not too far off from the logs, and none is an 
outrageous outlier. 



The eight synthetic models available are the following. The first model was proposed 
by Feitelson in [1996] (shown as FE6). This model is based on observations from several 
workload logs. Its main features are the hand-tailored distribution of job sizes (i.e. the 
number of processors used by each job), which emphasizes small jobs and powers of two, 
a correlation between job size and running time, and the repetition of job executions. In 
principle such repetitions should reflect feedback from the scheduler, as jobs are assumed 
to be re-submitted only after the previous execution terminates. Here we deal with a pure 
model, so we assume they run immediately and are resubmitted after their running time. 
The second model (FE7) is a modification from '97 [Feitelson and Jette, 1997]. 

The model by Downey (DOW) is based mainly on an analysis of the SDSC Paragon 
log [Downey, 1997 & 1997b]. It uses a novel log-uniform distribution to model service 
times (that is, the total computation time across all nodes) and average parallelism. This 
is supposed to be used to derive the actual runtime based on the number of processors 
allocated by the scheduler. Again, as we are dealing with a pure model here, we instead 
use the average parallelism as the number of processors, and divide the service time by 
this number to derive the running time. 

Jann's model (JAN) is based on a careful analysis of the CTC SP2 workload [Jann et 
al., 1997]. Both the running time and inter-arrival times are modeled using hyper Erlang 
distributions of common order. A separate distribution is used for different ranges of 
number of processors, with the parameters derived by matching the first three moments 
of the empirical distribution from the log. 

The model by Lublin [Lublin and Feitelson, 2003] (LUB) is based on a statistical 
analysis of four logs. It includes a model of the number of processors used which 
emphasizes powers of two, a model of running times that correlates with the number of 
processors used by each job, and a model of inter-arrival times. While superficially 
similar to the Feitelson models, Lublin based the choice of distributions and their 
parameters on better statistical procedures in order to achieve a better representation of 
the original data. 

The last and most recent model is by Cirne and Berman [2001]. This is a 
comprehensive model for generating moldable jobs, based on the analysis of four SP2 
logs. It is composed of two parts: A model for generating a stream of rigid jobs; and a 
model for turning rigid jobs into moldable ones. The model also addresses the issues of 
requested times for a job, and the possibility of job cancellation. Here we test the basic 
features of the model – the generation of arrival time, runtime, and parallelism for each 
job. The model takes into account workday cycles, and its inter-arrivals pattern can be 
adjusted to match each of the logs used to build it (we tested against the KTH, CTC, and 
SDSP2 versions of the model, denoted CBk, CBc, and CBs, respectively). 

In order to produce test data for the models, the following methodology was used. 
Using code available for each model about 200,000 jobs from each model were 
generated. From these jobs, all the per-log variables that we analyzed so far were 
computed. We also experimented with generating additional job sets for each model, in 
order to test the stability of the results. The result was that the Co-Plot did not change. 
This is expected, since all the models use stationary distributions, and therefore tend to be 
more stable than real workloads. 

Figure 8 is the result of running Co-Plot on all production logs and on all the models. 
The coefficient of alienation of this plot is 0.09, and the average correlation of the 
variables is 0.85. The variables used in this plot are the medians and intervals of the 
runtimes, CPU work, and normalized parallelism, and the median of inter-arrival times. 
The runtime and CPU load variables are in the plot, although their correlations were 
lower than in the previous ones – 0.77 and 0.79 respectively. The un-normalized 
parallelism (Pm and Pi) variables had low correlations, and were removed. The number 
of jobs per day had a very low correlation and was removed – the models were not 
designed with this variable in mind, and indeed don't model it well. For example, the 



Downey and Feitelson models produce more than ten times the average number of jobs 
per day compared to the production logs. A similar phenomenon occurs with the interval 
of inter-arrival times, which had a very low correlation – in some of the models this value 
is an order of magnitude lower than in the production workloads. 

 
Figure 8: Co-Plot of logs versus models 

The Cirne and Berman models seem to be outliers in Figure 8 – they are clustered far 
from the rest of the logs and models. Using only one of the three variations of this model 
did not change this result. It seems that although three of the four logs used to build this 
model are used in our analysis too, the distributions weren't designed to match the median 
and interval statistics on which we rely here. 

Jann's model is very close to CTC, which is expected, since it was designed 
specifically to match the CTC workload, using a sophisticated framework which matched 
the first three moments of the major distributions. The OSC log is similar to the CTC log, 
so it is also well modeled by Jann's model. 

Feitelson's models and Lublin's model are close to a group of several production 
workloads – LLNL, NASA, LACM, BLUE, and the Paragon. Lublin's model is placed 
closer to the center of this group of logs in other runs. Downey's model is somewhat 
separated from the pack in the plot, although it is not an extreme outlier. 

The KTH, SDSP, and O2K logs have no model close to them. The LACM log also 
separates from its group in some of the runs. This reflects the general problem of finding 
an appropriate model for a given machine. Since logs are not clustered according to 
location, machine type, size, or any other such criteria, it is impossible to match one of 
the existing models to a new machine in order to predict its workload in advance. 

The above experiment was repeated with the addition of the batch and interactive 
workloads, to see how they are modeled. The batch workload of LACM5 was an outlier – 
no model (or other log) was close to it. The Blue Horizon batch workload was not an 
outlier – it was drawn mid-way between where the KTH and PAR6 logs stand in figure 8 
– but still no model was very close to it. Both interactive logs were clustered very close to 
each other, and distant from the other logs. With the exception of Lublin’s model, none of 
the existing models is designed specifically for interactive logs, though some may 



implicitly model only batch jobs, and this shows in the analysis. Since the interactive 
portions of the logs in our data set are very similar, a simple non-parametric model 
should suffice to model them. The interactive version of Lublin’s model does this well – 
it was plotted with good proximity to the interactive logs. 

Another interesting question is how the models compare to the cleaned logs – the 
same workloads but without flurries and other anomalies. Intuitively, cleaned logs should 
provide a better match to the models, since the distributions that describe them are better 
behaved. Figure 9 is the result of running Co-Plot on all the production logs, using the 
cleaned versions whenever possible, and using all models except the Cirne and Berman 
models. The coefficient of alienation is 0.09, and the average of correlations is 0.84. 

The Cirne and Berman models were removed because they were extreme outliers – 
about half of the plot's area separated them from the rest of the observations. After 
removing them (and the two load variables, although this didn't change the plot much), 
both the resulting observations map and variables map are close to our previous analysis. 
Lublin's model appears close to the center, and this repeats in other runs of Co-Plot as well.  

 
Fig. 9. Co-Plot of cleaned logs versus models 

As this model is usually near the center of the map it seems to be the best choice for 
someone wishing to generate an “average” sample workload. However, this model is only 
a close fit to 3-4 of our production logs. 

A quick look at the variable arrows of Figures 8 and 9 is also worthy. It is almost the 
same as that of figure 2, apart from a slight shift of the Am variable from the Multiple 
Jobs Axis in Figure 8, and a shift of the normalized parallelism variables towards the 
Single Jobs Axis in Figure 9. This is good news: At least for variables that remained in 
the plot, the synthetic workload models do not distort the picture by assuming wildly 
incorrect distributions or correlations. 

 
10. IMPLICATIONS: BUILDING A PARAMETRIC WORKLOAD META-MODEL 

Having concluded our data analysis using the Co-Plot method, the next three sections 
explore three major implications of the presented results. This both translates our findings 
into more concrete tools for further research, as well as highlights the usefulness of the 



results that the Co-Plot method provides. The three issues are the construction of a 
parametric workload meta-model; considerations for manipulating the load of given 
models; and guidelines for extending the parametric model into a full model that 
improves upon current models. 

One of the first results of our analysis was the fact that real workloads are rather 
different from one another, so a single model cannot represent all systems. This is 
supported by Figure 1, which compares the production workloads. Except maybe the 
LLNL, Blue Horizon, and Paragon workloads, the other logs are as far from one another 
as possible. As any specific model will also occupy a given place in the "workloads 
space" represented by the Co-Plot, it too will be far from most of the logs. 

The good news is that another result of the Co-Plot analysis was the identification of 
variables that can be used to parameterize a workload model. Figures 2 and 3 show that 
the analyzed workloads fit well into a two-dimensional space, and that each can be placed 
in this space by defining its position on two axes: The Single Job Axis, and the Multiple 
Jobs Axis. The variables on each axis are highly correlated with each other, so that once 
one is given, the others can be well approximated. Moreover, the two axes are largely 
independent, so there is no need for multiple regression, for example. It is therefore clear 
that a parametric workload model should take one parameter from each axis. 

The main criterion for selecting a representative parameter from each axis is that this 
should be a variable that can be estimated for a future system, before that system is built. 
This is required because a model of a system's workload is most useful before it is built 
and deployed. Specifically, we found that the Multiple Jobs axis can be represented by 
the number of jobs per day (JD), or to a lesser degree (but trivial to know in advance) the 
total number of nodes in the machine. The Single Jobs Axis does not contain an easy-to-
predict variable, except for the users per job parameter, to which it is only weakly 
correlated. Experimenting with different possible lead variables led to the conclusion that  

Table 6: Fitting equations and coefficients to the JD and Cm variables 

Equation R2 
Ci = 14052  × ln(Cm) – 31068 0.75 
Rm = 0.8346 × Cm + 131.0012 0.60 
Ri = 10423  × ln(Cm) – 14441 0.76 
Pm = -1.531 × ln(Cm) + 12.261 0.28 
Pi = 74.69  × e-0.002×Cm 0.44 
UJ = 0.7633 × Cm0.3073 0.45 
CL = 2.2024 × JD-0.2534 0.75 
Am = 2764.4 × JD-0.6582 0.74 

Ai = 580400 × JD-1.1079 0.96 
 

the highest correlations are achieved when the Single Jobs Axis is represented by the 
median of CPU work (Cm). Table 6 summarizes the equations and R2 values for fitting 
the other main variables to the two selected representative variables. These values were 
generated based on all the data from the production workloads (Table 2). 

Note that the correlation is not always linear, as this is not the type of correlation that 
Co-Plot uses (see the definition of distance and alienation from Section 2). If variables 
are plotted along the same axis, it means that the variables grow together, by some 
relationship. Limiting this relationship to be linear would make Co-Plot far less useful in 
practice, since far fewer datasets would fit into a two-dimensional space under such a 
limitation. The imperfection of the R2 values in Table 6 are caused by a combination of 
the imperfect plot they are based upon (a coefficient of alienation of 0.10 and not 0.0), 
and our choice to use only simple fitting equations, to keep the model simple and avoid 
over-fitting. 



In order to test whether this meta-model is good enough for practical use, we test our 
ability to generate parameter combinations that will locate a model in a specific place in 
the Co-Plot map. For this we generated four synthetic observations, using combinations of 
two pairs of “low” and “high” values of the two proposed parameters, as shown in Table 7. 

Table 7: Fitting equations and coefficients to the JD and Cm variables 
 

 
 
 
 
 

 
The resulting Co-Plot is shown in Figure 10, using the same variable set as in Figure 

1, and the same dataset augmented by Gen1 to Gen4. The coefficient of alienation is 0.11 
and the average of correlations is 0.85. The results are very positive in two respects. First, 
the Figure itself is not affected at all by the addition of the four new observations: All the 
observations and all the variables are exactly where they were in Figure 1, and retain all 
their relative positions and directions. 

Second, the four synthetic observations are each placed in a different quadrant of the 
plot, as marked by the center and directions of the two axes. Moreover, each is placed in 
the quarter it is expected to belong to, as dictated by Table 6. We therefore conclude that 
the meta-model specified by Table 6 is a good representation of the current known world 
of production parallel workloads. 

 

 
Figure 10: Verifying the Parametric JD/Cm Meta-Model via Synthetic Observations 

Observation JD Cm 
Gen1 100 25 
Gen2 300 25 
Gen3 100 600 
Gen4 300 600 



11. IMPLICATIONS: LOAD MANIPULATION 

Testing a new scheduling algorithm or comparing algorithms is often done by 
simulating how they schedule the same workload, over a range of loads. A graph of 
performance versus load is then drawn and analyzed. Such a test is usually carried out by 
taking a single workload, and manipulating its load [Majumdar et al., 1988; Lo et al., 1998]. 

There are three basic ways to raise a workload’s load: Lowering the inter-arrival time, 
raising the runtimes, and raising the degree of parallelism. The most common [Majumdar 
et al., 1988; Lo et al., 1998] technique is to expand or condense the distribution of one of 
these three fields by a constant factor. Note that by doing so the median and interval (any 
interval) is also multiplied by the same factor. The choice of which field to alter in order 
to change a system’s load should depend on the correlations between the runtime load 
and these three variables. We would choose lowering inter-arrival times if it were 
negatively correlated with load, and raising runtimes or parallelism if they were 
positively correlated with it. By doing so, we minimize the side effects of raising the load 
on other features of the workload. 

Regrettably, this logical criterion does not seem to match the data. First, from Figure 
2 it is clear that systems with a higher average runtime load (RL) have a higher inter-
arrival time median (Am), not a lower one. Likewise, the median of jobs runtimes (Rm) 
is negatively correlated to the load, rather than being positively correlated. As for the 
degree of parallelism, while it is indeed correlated with the runtime load, this is only a 
weak correlation. In addition, raising parallelism is almost never possible, since it breaks 
the dominance of powers-of-2 requests, which completely alters the behavior of many 
algorithms for which the workloads are needed (schedulers are the most obvious example). 

These correlations mean that a correct way to raise a system's load would end up with 
somewhat higher inter-arrival times, a somewhat higher degree of parallelism, and 
shorter runtimes. None of the three simplistic ways to alter the load satisfy these 
requirements; rather, they contradict them. Thus varying a given workload model's load 
is not as simple as it looks. 

A possible solution to this problem is based on the parametric meta-model presented 
in the previous section. Although the runtime load is not fully correlated to either axis, 
the CPU load (CL) is highly correlated to the Multiple Jobs Axis, and it can replace the 
jobs-per-day variable as the lead variable representing that axis in the meta-model. Note 
that current models do not differentiate between runtime load and CPU load – they 
implicitly assume that jobs use 100% of the available CPU during their entire run. Table 
8 defines the meta-model equations based on the CL variable rather than the JD variable; 
only equations for CL are given, since the ones for Cm remain as they were in Table 6. 

Table 8: Fitting equations and coefficients to the CL variables in stead of the JD variable 

Equation R2 
JD = 39.309 * CL-2.9549 0.75 
Am = 285.72 * CL2.208 0.72 
Ai = 10103  * CL3.3032 0.73 

Note that under this meta-model, changing the load affects the runtimes, parallelism, 
and inter-arrival times as expected. This is not a recipe for manipulating a given 
workload to achieve a desired load level; but a model that will be based on this meta-
model will handle load manipulations correctly. Again we validate this model using four 
synthetically generated observations, as done in Table 7 for the JD/Cm meta-model. The 
low and high values used for the CPU load were 0.45 and 0.65 respectively, and the Co-
Plot which merges Figure 1 with the four generated observations is given in Figure 11. Its 
coefficient of alienation is 0.11, and its average of correlations is 0.85. As the Figure 



shows, the CL/Cm meta-model is as successful as the JD/Cm meta-model in representing 
the known workloads space. 

 
Figure 11: Verifying the Parametric CL/Cm Meta-Model via Synthetic Observation 

 
12. IMPLICATIONS: GUIDELINES FOR WORKLOAD MODELING 

The Co-Plot analysis can also be used to provide a set of concrete guidelines for the 
construction of future workload models. Note that the parametric models presented in the 
previous two sections are only meta-models: They do not provide a complete model that 
can be used to create a stream of parallel jobs. This requires traditional distributing fitting 
techniques, which are beyond the scope of the current paper. As we saw, the results of 
our Co-Plot analysis can help by providing guidelines for a complete model, by 
identifying the two major axes of correlated variables, and which variables to use as 
representatives. In addition, we can suggest the following observations. 
1. Current models do a good job modeling the size of jobs – runtime, parallelism and 

CPU work – but not a very good job for modeling the temporal structure of the 
workload – inter-arrival times, jobs per day, and in a lesser sense the load. 

The most interesting variables in figures 8 and 9 are those that aren't there. The 
number of jobs per day, the inter-arrival times interval (and in some runs the median), 
and both kinds of load, had a much lower correlation than when analyzed on the 
production workloads alone. This can only mean that the models have the "wrong" values 
in these variables. If the values of all observations for some variable don't grow in the 
same direction along some axis in the Co-Plot, then it is impossible to superimpose that 
variable's arrow with an adequate correlation on the plot. This means that the removed 
variables are not modeled well by most of the analyzed models. On the other hand, the 
variables related to the size of a job – runtime, parallelism and total CPU work – kept 
their high correlations, and thus seem to be well modeled today. 



This means that the current models may be ill-suited for design decisions that are 
sensitive to the temporal structure of the workload. In particular, the multiple and delicate 
interactions between the workload and the scheduler [Feitelson, 2002 & 2003] mean that 
more work is needed when modeling a workload intended to be used to select a scheduler. 
2. Production workloads are not stationary but change over time. Design decisions and 

workload models need to adjust over time accordingly.  
Figure 1 shows that architecture, a site’s user population, and even time do not 

guarantee similarity between workloads. Figure 6 shows that production workloads may 
change over time. There is no guarantee that a design decision for a computer based on 
the past – even its own past – is the right one to make. A parametric model, based on the 
expected use of the computer in the near future, may provide a better answer. For 
example, if an administrator of a production system plans to cancel a limit on the runtimes 
of jobs, and expects the system’s median runtime to grow as a result, then our results can 
be used to predict the direction of change to other variables of the workload as well.  

The models that are available today are similar in this issue to the production 
workloads, since they are non-parametric. This means that workloads generated by each 
model will have a single position (Co-Plot makes this visual, but the claim holds 
metaphorically as well). There is no reason to believe that an arbitrary future production 
workload will match that specific position. The Cirne-Berman model support for 
adjusting the inter-arrival pattern had little affect on its overall position – but this is 
expected, since changing only one variable of a workload can only have a limited effect. 
In addition, future models should be non-stationary if they are used to produce a 
workload that is more than a few months long. One approach to modeling such 
phenomena is using long-range statistical processes [Beran, 1994]; another approach may 
be a multi-class workload model, in which for example the arrival and departure of users 
can be modeled explicitly [Calzarossa and Serazzi, 1994]. 
3. The median and interval are the preferred statistics to use when comparing logs, 

because they are stable to flurries and to outliers in general. Model the runtime, 
degree of parallelism, inter-arrival times, and total CPU work by a distribution that 
has an almost full correlation between the median and interval. 

As figure 5 shows, the median and interval statistics are very stable to changes in the 
log. In particular, they are robust to outliers, most notably in the shape of flurries. This is 
highly important to the analysis and use of workloads, since in most production logs there 
are many kinds of questionable entries. For example, if a job lasted ten times more than 
the machine's documented maximal runtime, it is impossible to tell whether this is a 
mistake in the log, or a real case in which the machine was dedicated to a high-priority 
special project. As shown in [Lazowska, 1977; Downey and Feitelson, 1999; Feitelson 
and Tsafrir, 2006], such unusual jobs can have a strong effect on the mean and standard 
deviation of an entire workload's runtimes, but have negligible effects on the runtime 
median and interval. It is impossible to reach any firm conclusions about workloads if the 
wrong statistics are used. 

Moreover, figures 1-3 demonstrate that the correlation between the median and 
interval of most of our major variables is positive and high. This requires the use of the 
right distributions to model them; note that this requirement is different from correlation 
between the mean and standard deviation.  

 
13. LIMITATIONS OF THE CO-PLOT METHOD 

Co-Plot has several unique advantages as a statistical analysis method: In particular, it 
is applicable even when there are many variables and few observations, it analyses 
variables and observations together, and it does not assume that variables are 



independent. However, Co-Plot has several inherent limitations as well, which one must 
consider when deciding whether to apply it to other datasets. 

First, Co-Plot presents a relative, rather than absolute, picture of the analyzed 
observations. For example, when looking at Figure 1, we can say that it represents the 
differences between the analyzed logs, but we cannot tell whether these are “small” or 
“large” differences. It is possible that the addition of several logs which would be very 
dissimilar to this dataset will cause the current logs to cluster together, and the new logs 
to cluster at the opposite side of the plot. To minimize this effect, we have used a 
relatively large dataset from a variety of unrelated locations and architectures. But still, as 
in every statistical analysis, our conclusions are limited by the available information. 

Second, Co-Plot places the arrows layer of the plot so that they are optimal with 
respect to the first layer of observations, but the first layer itself is not perfectly laid out. 
As explained in section 2, the arrow for each variable is placed after the observations are 
placed and independently of the other arrows, such that its angle best reflects the growth 
of values of the associated variable. However, since the observations are usually placed 
with a coefficient of alienation that is larger than zero, than the arrows are actually 
optimized to fit this skewed picture rather than the original data. This means that 
conclusions drawn from the arrows, for example about correlations between variables, 
may be skewed as well. 

Co-Plot works this way because it is a precondition to analyzing both the observations 
and the variables in the same plot together. Two things must be done to minimize this 
effect. First, one must be careful to ignore plots with high coefficients of alienation, or 
low correlations for the fit of specific variables. The values we have given for the plots 
we used in this paper are considered adequate. Second, one should not rely on a single 
plot, but instead analyze many variations of the data – using slightly different observation 
and variable sets each time – and observe which features of the resulting analysis are stable.  

A third, more general limitation of Co-Plot is that it is only useful when the data 
naturally fits into a two-dimensional space. If the data cannot be reduced (approximately) 
to a 2D space, a high coefficient of alienation will be measured, so there is no danger of 
unknowingly missing this phenomenon. If this happens a different technique will be 
required. The principles of Co-Plot are general and can be used with data in any 
dimensionality, not just 2D, but this makes visualization more difficult, and is therefore 
not supported by the current software implementations of Co-Plot. 

A fourth limitation of Co-Plot is that it does not gracefully handle data with missing 
values. In our dataset, we have dealt with this issue by using approximations – for 
example, when the CPU load wasn’t given, the runtime load was used to estimate it. 
However, this may be a more difficult problem in other datasets. 

 
14. SUMMARY AND FUTURE RESEARCH 

This paper makes two main contributions. First, it presents the Co-plot technique, a 
multivariate statistical method suitable for the demands of the workload modeling field. It 
works well given few observations and many variables, as happens in our case. And it 
does not require the variables to be independent for the analysis to be valid. In contrast, it 
analyses the variables together with the observations, and reports which variables are 
significant, and how they interact with one another and with the observations. 

Second, this paper provides new insights about the majority of production workloads 
and synthetic models available today for parallel supercomputers. This is the largest and 
most diverse data set of workloads analyzed so far – our eleven observations are from ten 
machines, eight architectures and seven locations. This critical mass enables us to 
characterize the “workloads space” for real-world large production supercomputers, and 
to identify its important variables and their relations.  



Future work extending this research is planned along two paths. The first is the use of 
the Co-Plot method for additional variables – testing for self-similarity, locality, cycles 
and so forth – and comparing the production and synthetic workloads on these questions. 
The second is to construct a new workload model, based on the meta-model and 
guidelines given in the previous sections, and to show examples in which its use is indeed 
required to make the right design decisions. 
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