
Reflections on Reflection in Agile Software Development

David Talby1, Orit Hazzan2, Yael Dubinsky3 and Arie Keren1
1 MAMDAS – Software Development Unit

Air Force, IDF, Israel
davidt@cs.huji.ac.il

ariekk@netvision.net.il
2 Department of Education in Technology and Science

Technion – Israel Institute of Technology
oritha@techunix.technion.ac.il

3 Department of Computer Science
Technion – Israel Institute of Technology

yael@cs.technion.ac.il

Abstract

This paper analyzes the reflections of an agile team,

developing a large-scale project in an industry setting.
The team uses an Iteration Summary Meeting practice,
which includes four elements: The customer’s
summary, a formal presentation of the system, review
of metrics and a reflection. The technique for the entire
meeting and for the reflection element in particular is
described, and empirical evidence is given to show that
it is assessed as highly effective, achieving its intended
goals, and increasing team satisfaction. Further, the
proposed practice supports tracking past decisions.
This practice is shown to be valuable to stabilizing a
new project as well as a continuous improvement
forum for a stable project. It also incurs a lower
overhead than existing alternative reflection practices.

1. Introduction

Reflection and continuous process improvement are a
fundamental aspect of agile software development. The
agile manifesto �[3] contains a principle stating that an
agile team should regularly reflect on how to become
more effective, and tune its behavior accordingly.
Cockburn �[4] asserts that "each situation calls for a
different methodology", and entails that a key agile
practice should be conducting regular post-iteration
workshops aimed at reflection and process tune-up.

Several systematic approaches have been suggested
on how to conduct effective reflection in agile teams.
The most widely known are post-iteration workshops
[4,15] and the postmortem review technique [5,13].
Empirical studies on the effectiveness of these methods
have been conducted by Salo et al. [14,15,16], and a few
experience reports have been published as well �[12].
This paper complements and extends the current body
of knowledge in this area, in three primary respects.

First, this paper presents empirical evidence taken
from a real, large-scale agile software project
developed in the Israeli Air Force. In contrast, to the
best of our knowledge the only empirical data
published on this issue to date is based on a series of
short-term projects done in a research setting. This is
important since in a long-term, industrial setting, team
members may act very differently towards process
improvement practices (such as reflection), since they
have a longer and more profound effect on their daily
lives. Our data confirms that reflection is a useful way
to improve an agile team's effectiveness and team
satisfaction in a real-world setting.

Second, this paper proposes and analyzes an
iteration summary practice that is different from those
studied to date [4,5]. Specifically, the meeting's
protocol contains several retrospective elements, only
one of which is team reflection. The reflection phase
itself follows slightly different ground rules than
commonly suggested [4,5]. The end result is a more
light-weight process, which takes only 2.1% of the
team's time, in contrast to 3.7% and 4.7% reported in

�[15] and �[5] respectively. We present data that shows
the effectiveness of the new elements in the iteration
summary in the team's eyes, and analyze data pertaining
to the modified aspects in the reflection technique.

Third, our quantitative and qualitative data about the
method's effectiveness uses a different research method
than applied before. While the work of Salo et al.
[14,15,16] is mainly based on action research �[1], we
use team members' perception on the process – i.e.
their reflections on reflection – as the main data source.
As the two research methods each have their own
merits and weaknesses, this work complements
previous work to draw a more complete joint picture.

This paper is structured as follows. Section 2
presents background and related work. Section 3
describes our research setting and method. Section 4
presents the Iteration Summary Meeting practice,
including the team's perceptions about it. Section 5
presents the "classic" reflection element of the iteration
summary, and analyzes both the technique used and its
effectiveness. Section 6 compares our Iteration Summary
Meeting practice and its reflection in particular to other
proposed methods. In section 7 we conclude.

2. Background and Related Work

2.1. The Notion of Reflection

Reflection is the process according to which an
individual (or a group) examines his/her/its actions
during the accomplishment of the action or after it.
Though reflection is not a new concept, its common
practice has been boosted after Schön had published
his two books The Reflective Practitioner �[17] and
Educating the Reflective Practitioner �[18], which
advocated the idea that a person who keeps reflecting
becomes a Reflective Practitioner, a position which
enables him or her to keep improving his or her
professional skills. While the first book presents
professions for which reflective thinking is (or should
be) inherent, such as architecture and management, the
second book focuses on how to educate students of
such professions to be reflective practitioners. The
working assumption in all cases is that such a reflection
improves both proficiency and performance within
such professions.

In the two books mentioned above, Schön analyses
the added advantages one may obtain from
continuously examining one’s practice and one’s
thinking about his/her practice. With respect to science
and engineering, Schön says that “[b]etween 1963 and
1982 … [i]ncreasingly we have become aware of the
importance to actual practice of phenomena –

complexity, uncertainty, instability, uniqueness, and
value-conflict” (�[17], p. 39). At that time, the Computer
Science community observed a similar phenomenon
with respect to developing software systems (Cf. the
“Software Crisis” terminology introduced in 1968 at
the NATO Conference in Garmish, Germany). Many at
the conference recognized that software development
should be guided by a professional-systematic
approach. The mental complexity involved in
developing software projects was acknowledged, and,
as a result, there was tremendous awareness of the
impossibility of managing software systems without
systematic (engineering oriented) methods. However,
though the complex nature of the profession of
software development was known at the time when
Schön wrote his books, he did not discuss the
application of the reflective practitioner perspective
with respect to software engineering.

The work presented in this paper follows other
publications that emphasize the importance of
reflection and retrospective in the context of software
development in general and with respect to agile
methods �[4] in particular. In general, Schön �[19]
discussed this application. Other examples are Hazzan
�[7], who describes the relevance of the reflective
practice perspective to software engineering based on a
systematic analysis of Schön's book, and Kerth �[11]
who specifically applies the retrospective perspective
to software development process.

2.2. Reflection in Extreme Programming

Hazzan and Tomayko [8,9] suggested adding a
reflective practice (RP) perspective to agile software
development processes in general and to Extreme
Programming (XP) �[2] in particular. Specifically, based
on Schön’s work mentioned above, it was suggested
that as a reflective practitioner one may improve the
performance of the XP practices. Analysis of the field
of Software Engineering (SE) and the kind of work that
software engineers usually accomplish in general and
the XP practices in particular, support the adoption of
the RP perspective to SE in general (as did Hazzan in
�[7]) and to XP in particular. Specifically, in Hazzan
and Tomayko �[8] it is suggested that a reflective mode
of thinking may improve the application of some of the
XP practices, as follows.

It seems that a RP approach fits very well to XP,
since XP emphasizes learning through reflection
processes. For example, the estimation of the team’s
velocity is improved from project to project based on a
reflective process; when a pair is engaged in a pair
programming session, the navigator reflects on the

drivers’ coding. Thus, it seems that one of the implicit
XP guidelines is reflection. Still, as far as we know, it
is not outlined inherently in the practices themselves.
Similarly to some of the XP practices, RP is not
explicitly directed to code production but in the long
term it may improve code production and quality. As
XP incorporates activities that are not directly oriented
to code production, yet may improve code development
processes, we suggest that the RP perspective may be
integrated naturally in XP.

2.3. Reflection in Other Agile Methodologies

Some agile methods other than XP have already
integrated some form of reflection into their practices.
Kähkönen's recent model for deploying an agile
method in an organization �[10] includes a post-iteration
workshop and analysis of metrics as the central
continuous improvement tool of the model. The project
analyzed in this paper, which has independently used a
very similar practice, provides an empirical case study
of this model's effectiveness.

Cockburn's Crystal family of methodologies �[4]
regards the need to tune the development process to the
specific needs of each team and project as a key issue,
and refers to "the mystery of how to construct a
methodology for each situation without spending so
much time designing the methodology" (�[4], p. 184).
The proposed solution is a reflection workshop,
conducted regularly during the mid- or post-iteration
events. Such a workshop begins with gathering issues
that need to be discussed, and ends with a list of tasks
and decisions about concrete changes in team behavior.

Dingsøyr and Hanssen �[5] have proposed
postmortem reviews – a “lightweight” version of the
similar "heavyweight" highly recommended practice
for large projects �[13]. They also suggest performing
the review once per iteration, involving the whole team.
They propose a technique called "the KJ method",
named after the Japanese ethnologist Jiro Kawakita
�[20]. In this method, each participant lists 3-5 issues
about the development process on post-it notes. The
notes are then grouped into positive and negative issue,
and the negative issues are prioritized. The high-
priority issues are then discussed by the team, and
turned into action items for changing the team's
behavior. The authors report that the method was
effectively used in several XP projects.

Salo et al. [14,15,16] provide an empirical
evaluation of the above two methods, based on a series
of research projects at the VTT Technical Research
Center of Finland. Each of four reported projects had
4-6 developers, and was six weeks long. A combination

of post-iteration workshops and postmortem reviews
was used, but all issues were considered at each
workshop (instead of only high-priority ones). The
number of positive and negative issues found at each
workshop, the total overhead of the workshops, the
number of resulting action items and the number of
implemented action items were all measured. Since this
is the main source of empirical evidence about agile
reflection to date, most of our comparison later on will
relate to it.

3. Research Framework

3.1. Research Setting

The subject of research of this paper is a large-scale
agile software project developed at the Israeli Air
Force. The project is a business-critical enterprise
information system, considered to be highly complex
and intended for a large and varied user population.
The agile software development method used in the
project is based on Extreme Programming �[2], with a
few adaptations in line with the agile approach that
were dictated by the project's size and the organization.

Since the project is both large-scale, and the first
one of its scope to be developed in the organization
using an XP-based method, it was considered risky
and, consequently, was scrutinized by many different
stakeholders. In order to manage risks and provide full
and timely information about the project’s progress, a
set of metrics was developed �[6], data was consistently
collected and analyzed, and regular reflection meetings
and formal iteration summary meetings were conducted.
These were the main stabilization and (later on)
continuous improvement forums for the team, and they
are the ones analyzed in this paper. The project team's
research efforts were complemented by external
consulting researchers.

This paper presents data based on the first four
releases (eight months) of the project. The project's
development team averaged 15 developers during this
period; this is an average since the team experienced
several personnel changes. According to the Whole
Team practice, the development team includes a mix of
programmers, business analysts, testers and managers.
Note that although 15 people filled the questionnaires
used as our main data source, not all of them were in
the team throughout the entire period. Still, the answers
include at least two people of each of the above roles.

3.2. Research Method

The main research method used in this paper is
personal reflection of team members on the reflection
process, done via written questionnaires several months
after the reflections in question took place. This is
inspired by Hazzan and Tomayko's ladder of reflection
�[8] used to illustrate the potential contribution of
adding a reflective practice to XP. The concept of the
ladder of reflection is described in (�[18], p. 114):

We can begin with a straightforward map of
interventions and responses, a vertical dimension
according to which higher levels of activity are
“meta” to those below. To move “up”, in this
sense, is to move from an activity to reflection on
that activity; to move “down” is to move from
reflection to an action that enacts reflection. The
levels of action and reflection on action can be
seen as the rungs of a ladder. Climbing up the
ladder, one makes what has happened at the rung
below an object of reflection.

In a reflection workshop of an agile software team,
team members reflect on their day-to-day activities.
When asked to fill a detailed questionnaire, for the
purposes of this research, regarding their attitudes
towards the reflection practice, team members are
performing a reflection on the reflection process – one
level up the ladder. This paper can be viewed as a
reflection on their responses – another level up.

In contrast, the research method in Salo et al.'s
papers [14,15,16] is action research �[1], which focuses
more on what practitioners do rather than what they say
they do �[1]. For example, �[14] concludes that reflection
raises team members' satisfaction, since the number of
negative issues found in reflection workshops
decreases along time. In contrast, we simply ask team
members' (in several ways) whether they are satisfied
with reflection as practiced in their team.

The reason why a ladder of reflections was chosen
as the main research method for this paper was because
action research requires intervention �[21], which was
impossible since the analyzed project is not a research
project. However, this provides an unintended benefit
since our data well complements Salo's work, as each
research method has its strengths and weaknesses. For
example, regarding participant satisfaction, the ladder
of reflection approach seems more appropriate, since
satisfaction is by nature a matter of individual
perception. On the other hand, directly measuring the
number of action items that were actually implemented
by the team (as done in action research) seems better
than asking team members how often this happened.

4. The Iteration Summary Meeting

This section describes the researched project's
iteration summary practice and the team's reflections
about it. The meeting had the following strict protocol,
which was first used to summarize the first iteration,
and remained virtually unchanged:

9:00-9:10 Customer's summary of the iteration
9:10-9:25 Formal presentation of the system
9:25-9:50 Review of iteration's metrics
9:50-10:45 Reflection (see section 5 below)
10:45-11:00 Break before planning game

Listing 1. Iteration Summary Meeting Protocol

The planning game for the next (beginning) iteration
started immediately after this meeting. All team
members were required to participate, and when the
project was regrouped into three smaller teams in the
third release, this meeting was still shared, and became
the only formal project-wide gathering. Only the
planning games were separated. The following lists the
content and intended goal of each meeting element.

The Customer's summary was a short, informal
verbal summary of the iteration, given by the customer.
This was direct feedback, usually focused on the
product rather than the process. When designing the
iteration summary, it was important for the team's
management to begin the iteration summary with the
customer's message, to signal his importance in the
team. It also helped in focusing people on the product
as an end goal, rather than their own specific tasks or
the development process by itself.

The Formal Presentation of the system was a
demo of the main new features of the ending iteration,
run on the actual, integrated system. This did not
replace a separate meeting with the customer to present
the iteration's product, done towards the end of each
iteration, which normally took two to four hours of a
task-by-task demonstration and intense free-hand use of
the system by the customer. The formal presentation
had two different goals. First was to make sure that the
system is indeed fully integrated, and that the team is
able to deploy it at will (this was non-trivial at first
since multiple servers were involved). Second was to
make sure that everyone knew all of the system's
features, from a user's (in contrast to a programmer's)
point of view. The second reason became the
prominent one as the team grew, while the deployment
scheme stabilized.

The Review of Metrics was a presentation and
analysis of the ending iteration's metrics. As described
in detail in �[6], four metrics were presented from the
beginning of the project: The product metric (amount

of written and passed tests), the pulse metric
(measuring continuous integration), the burndown
metric (estimating convergence to release goals), and
defect metrics (number of new and open defects).
Starting from the middle of the third release, task-by-
task estimated versus actual time was also analyzed, as
well as the time reported for overhead activities.

The goal of this element of the iteration summary
was twofold. First was to present the data to the entire
team, replacing individual perception (for example,
about product quality, time lost to overhead, etc.) by
facts. Second was to openly discuss the reasons behind
the metrics, since metrics cannot be analyzed
regardless of context. For example, a decrease in the
number of new defects does not necessarily stem from
improved product quality: It may be the case that less
testing was performed in this iteration (and thus fewer
bugs were found), or that people don't report all defects
into the common defects table (for example if they
fixed them at once and consider the report redundant).

The Reflection is intended to discuss a specific
problem in the development process, and change it as
necessary. It is described in detail in the next section.

Figure 1 summarizes the team's answers to the
following question: "Indicate the importance of each
element of the iteration summary meeting". Possible
answers were on a scale from 1 (unimportant) to 5
(very important). Team members were also given the
option to explain their choices in free writing.

The results indicate that as a whole, team members
consider the iteration summary meeting to be of high
value – its average importance is 3.9. The most
important element of the meeting according to this
team is the customer's summary, with an average of
4.1. Note that this is a simple ten-minute element at the
beginning of the meeting. It seems that team members
place very high value on this direct form of feedback;
as one wrote: "It's hard to explain why, but it's good to
know what he thinks".

The formal presentation of the system as well as the
reflection elements both received an average of 3.7.

Respondents' explanations of their choices were usually
in line with the intended goals of these elements. The
review of metrics element received an average
importance of 3.0, and the written comments support
the impression that team members are divided in their
opinion regarding its importance. All managers and
team leaders view it as highly important, while some of
the novice developers wrote that "it is mainly of interest
to managers". We believe these results reflect an
inherent difficulty in balancing an informative
workplace against some programmers' general dislike
of "management".

When asked the open question: "Which elements of
the meeting should be modified (extended, reduced or
cancelled)?" The most popular answer was that
reflections can be extended, when their subject is very
important. There were no suggestions to cancel any
element, and (this was asked in a separate question) no
offers for new elements or additional continuous
improvement practices.

5. The Reflection Practice

5.1. Technique

In line with the guidelines used in [4,5,15], this
team’s reflection practice was designed to be "agile":
Enable small incremental improvements in the
development process, achieved by a very simple
process which encourages high communication and
feedback. Listing 2 summarizes the details of the
reflection technique used in this team; judging from
this research's results, we recommend it as a recipe for
adopting reflection as an XP or agile practice in other
teams as well.

The technique employs one special role – the
reflection's moderator. It was usually carried out by the
team leader, and this was exploited to extract the
subject selection as well the exact phrasing of action
items out of the reflection meeting itself.

0
1
2
3
4
5
6
7
8

1 2 3 4 5

0

1

2

3

4

5

6

1 2 3 4 5

0

1

2

3

4

5

6

1 2 3 4 5

0

1

2

3

4

5

6

1 2 3 4 5

0

1

2

3

4

5

6

1 2 3 4 5

Customer Summary Formal Presentation Review of Metrics Reflection The Entire Meeting

Figure 1. Perceived Importance of Elements of the Iteration Summary Meeting

� Only one specific problem is discussed at each
reflection meeting.

� The discussed problem should relate to the
development process, not the developed product.

� The subject is chosen in advance by the moderator
(after informal consultation with other team
members), and presented at the beginning of the
reflection meeting.

� The reflection cannot exceed one hour.
� The whole team is required to attend the reflection.
� The reflection may be an open discussion, or use

some structured problem solving technique.
� Everyone is proactively encouraged to speak, but is

not required to do so.
� Team members are encouraged to speak their own

opinions, as bluntly as they see fit.
� The moderator records important insights and

proposed action items that surface during the
meeting.

� The moderator summarizes the meeting by reading
to the team the decided action items.

� The decided action items are effective immediately.
They are actual changes in day-to-day team
operations that should reduce the debated problem.

� The moderator publishes the main insights and
action items to the teams soon after the reflection.
Emails and newsgroup posting were the common
format for these messages.

Listing 2. Reflection Technique

5.2. The Goals of Reflection

Figure 2 summarizes team members’ reflections
about the goals of the reflection process. They were
asked about their agreement with given statements, and
possible answers were strongly disagree (SD), disagree
(D), indifferent (I), agree (A) or strongly agree (SA).

In addition to the initial purpose of process
improvement, reflection has two additional social
goals: To resolve conflicts in a business-like rather than
emotional manner; and to enable people to ‘blow off
steam’ on disturbing issues, thus clearing away
negative feelings. An open question about the value of
reflection did not raise additional goals. These goals
are in line with other reports �[12].

As Figure 2 shows, team members generally assess
the reflection technique as carried out in this project to
be achieving these goals. Questionnaire respondents
agree with an average of 3.8 that decisions reached in
reflection meetings are usually implemented (where SD
is counted as 1 and SA as 5). Note that almost half of
the team did not “agree” or “strongly agree” to this
claim; written comments on this issue stated that the
realization of some decisions was not tracked well
enough. We will return to this issue in section 6.1.

Reflection is viewed as an excellent tool to resolve
conflicts (average agreement of 4.2) and to vent
negative feelings on an issue (average 4.2 as well). The
main cause for this was the fact that team members
were able to express their true opinions and feelings
about the debated subject, even if it was obviously
unaccepted by the rest of the team. This statement had
an average agreement of 4.5, with only one
disagreement who wrote that personal insults should
not be allowed. Blunt and sarcastic statements were a
natural part of reflections, and the results suggest that
their positive effects, of creating an open and honest
atmosphere, outweigh their negative effects.

0
1
2
3
4
5
6

SA A I D SD

0

2

4

6

8

SA A I D SD

0
1
2
3
4
5
6
7
8

SA A I D SD

0

2

4

6

8

10

SA A I D SD

“Decisions reached in
reflection meetings were

usually implemented"

“Reflection is an efficient
way to solve tensions and

conflicts”

“One of the goals of reflection
is to let people ‘blow off

steam’ on an issue”

“In a reflection anyone can
speak their mind fully, even

if it is obviously unaccepted”

Figure 2. Reflections on the goals of Reflection Meetings

5.3. The Reflection Technique

The questionnaire filled by team members included
several questions intended to measure several specific
aspects of the reflection technique. We have chosen to
focus to four aspects, summarized in Figure 3.

First, team members assess the subjects of reflection
meetings to be relevant on their ongoing work (average
of 4.1, no one disagreed). This is of importance since
in contrast to other suggested reflection techniques,
such as post-iteration workshops [4,15] and post-
mortem reviews �[5], in this technique the subject is
chosen in advance by the moderator (which was usually
the team leader in this project). This has the advantage
of not spending time to find and decide on the subject
during the reflection meeting itself, thus lowering the
overall time it requires. The risk of selecting “wrong”
subjects did not seem to materialize in this project,
probably because the moderator is the team leader, who
is a member of the development team and is thus
intimately familiar with its day-to-day problems.

The questionnaire also included two open questions,
asking which subjects were the best to handle in a
reflection, and which subjects were the worst. The
results were very consistent among different team
members, and are summarized in Listing 3. They
should be regarded as strong guidelines for future teams.

Reflection subjects should be …
 � Relevant to the entire team
 � Organizational issues
 � Issues not everyone agrees on
Reflection subjects should not be …
 � Personal quarrels and accusations
 � Technical problems
 � High (external) management initiatives

Listing 3. Reflection Subjects Do’s and Don’ts

Second, only five team members agreed that
structured reflections were preferable to unstructured
ones (average of 3.2). Only four reflection meetings
were structured throughout the examined period. It may
be the case that the right problem solving technique
was not introduced to this team. In any case, open
discussions were sufficient to achieve the bottom-line
positive results presented in the next section.

Third, publication of a written summary of each
reflection meeting, even if done in an informal forum
such as email, was perceived by the team as highly
important (4.3 average, no one disagreed). In free
writing comments, people explained that this was
important mainly to prevent arguments on whether
something was agreed upon and in what exact way,
particularly as the project’s history became longer and
the risk of forgetfulness rose. An additional benefit was
enabling newcomers to the team to catch up quickly
with the list of process adjustments and general insights
that the team applied to the textbook XP practices.

Fourth, the team had mixed opinions on whether the
strict limit on the reflection’s time frame impeded its
effectiveness. The average agreement to this statement
was 3.4, and written comments on the issue where
mostly of two flavors: Commenting that more time was
required only in several difficult reflections; and
commenting that in some reflections much more time
could have been spent, but this would not have led to
any improved results. It may be the case that when
trying to balance a fruitful discussion, a minimal
overhead and a thorough investigation of the given
problem, maintaining a strict one-hour limit goes
against the last of these goals. However, since the team
is undecided on this issue, it is impossible to make any
specific recommendations.

0
1
2
3
4
5
6

SA A I D SD

0

2

4

6

8

SA A I D SD

0

2

4

6

8

SA A I D SD

0

1

2
3

4

5

SA A I D SD

“The subjects of reflection
meetings are usually relevant

to day-to-day work"

“A structured reflection
is preferable to free

conversation”

“It’s important to publish the
reflection meeting’s decisions

immediately after it ends”

“Limiting the reflection’s
time sometimes impeded the
ability to get to the root of

the problem”
Figure 3. Reflections on the technique of the reflection meeting

5.4. Effectiveness of Reflection

Having discussed the technique and the goals of the
Reflection practice, we now turn to the most important
question: It is effective? In this paper we analyze the
perceived effectiveness as viewed by the team, which is
summarized in Figure 4. As a short summary, all results
are very positive.

Team members highly agree that raising a problem
in a reflection meeting is better than having a decision
made by the team leaders alone (4.1 average, no one
disagreed), and that they’ll be glad if reflections will be
used in their next team (4.2 average, no one disagreed).
No one agreed with the statement “I don’t understand
at all the purpose of reflection” (1.5 average). It seems
that regardless of eventual outcome, people are much
more satisfied when they take part of the decision
process, and their opinions are seriously heard.

As the team managers testify, this social effect also
greatly eases making difficult behavioral changes in the
team. Introducing such changes by presenting the
problem being addressed in a reflection meeting reduces
their perception as ‘dictated by management’, and
substantially reduces resistance to change. In contrast,
changes that were forced on the team from above
encountered great resistance, which resulted in reduced
success rates. Presenting the team with a problem
rather than a solution is the key factor success here.

Regarding metrics, team members state that they
will collect and track metrics when they become team
leaders (3.9 average). The most common comment
people wrote next to this question was that they may
not use the exact same set of metrics analyzed in this
project. This was commented both by people who
agreed to this statement and those who didn’t, and
reflects the fact that not all metrics had a (perceived)
equal contribution to ongoing development.

6. Discussion and Comparison

The previous sections presented the team’s practice
and reflections about this practice, regarding the
Iteration Summary Meeting, the reflection technique,
the reflection’s goals and its effectiveness. This section
discusses three additional aspects of the proposed
practice, required to complete its presentation as a
continuous process improvement framework: How to
verify that decisions are implemented, how much
overhead the process requires, and how it evolves over
a long period of time. The results from the researched
project are compared to previous publications.

6.1. Verifying Implementation of Decisions

A systematic method to verify that decisions are

carried out is required in any process improvement
scheme. Reflection is no exception, even though many
of the decisions are implemented naturally since they
are decided by the team, and their rationale is well
known to team members.

Salo �[16] proposes such a systematic method, in
which the action items resulting from a post-iteration
workshop are grouped in a table with the following
columns: Finding, Action Point, Actor, Validation Plan
and Validation. The first four columns describe the
problem, what the action to correct it will be, who is
responsible for overseeing it, and how the results will
be validated. The fifth column is filled during the
following post-iteration workshop, when the table is
reviewed to verify that all actions were taken, and that
the desired results were achieved.

Such a method is a major improvement over having
no method at all, but it does not handle one central
issue: Most action items resulting from reflection
meetings are changes to continuous activities. For

0

1

2

3

4

5

SA A I D SD
0
1
2
3
4
5
6

SA A I D SD

0

2
4

6
8

10

SA A I D SD
0

2

4

6

8

SA A I D SD

“When I’ll be a team leader,
I’ll conduct ongoing

collection and tracking of
metrics"

“I’ll be glad if Reflection will
be used in my next team”

“I don’t understand at all the
purpose of reflections”

“Raising a problem in a
reflection meeting is better

than having a decision made
by the team leaders”

Figure 4. Reflections on the Perceived Effectiveness of Metrics and Reflections

example, action items such as “stand-up meetings
should be limited to ten minutes, and not evolve into
technical discussions”, or “task durations in a planning
game should be between 5 and 25 hours” should be
applied continuously. Reviewing them only in the first
iteration after they were decided does not ensure their
continued application. Action items that are one-time
tasks – for example “upgrade version of night build
tool” – are covered by this method, but this is
redundant: In the researched project, such tasks were
simply added as development tasks in the planning
game, and were thus tracked (including estimated
versus actual time to completion) like any other task.

The most effective way to validate that a given
problem is solved and remains solved is to track it
using the project’s metrics. Figure 5, replicated from
�[22], illustrates this approach using the following story.

The project started with one professional tester on
the team, who took responsibility for the entire
acceptance testing effort in the first three iterations.
However, this came at the cost of overtime, and by the
third iteration it was clear that one tester cannot deal
with the product’s growth rate. Therefore, the
reflection meeting of iteration 1.3 (First release, third
iteration) was devoted to this subject, and it was
decided that all team members will begin writing and
running acceptance tests, and will be trained to do so.
The team also decided to start measuring the product
size metric generated by its professional tester(s) and
by the entire team (including the testers) separately. As
Figure 5 indicates, what followed is a rapid increase in
product size, while the tester’s contribution to it
remained at the same level for the next three iterations.

The issue resurfaced again in iteration 2.3, in which
the tester was transferred in the middle of the iteration
to another project which had an emergency. This was
the only iteration ever in which the team failed to
increase the previous iteration’s product, since not all
regression tests were run. As the metrics indicate, only

the tester’s contribution was missing in that iteration –
the rest of the team contributed as before. This was
once again the topic of that iteration’s reflection, in
which the team discussed how other developers can
take over the tester’s test suites, and prevent such an
occasion from recurring in the future. As the metrics
show, the problem was solved in the next iteration, and
growth in product size was stable from then on, even
though testers’ contribution often fluctuated.

Note that not every action item can be tracked by
metrics, since the complete set of metrics must remain
small – otherwise the collection and analysis of all
metrics every iteration would be impractical. However,
tracking metrics seems like the only successful formal
practice that can be effectively used to monitor a
problem or a project risk over a long period of time.

6.2. Overhead of the Process

All previous works on the subject of reflection relate

to its overhead, since this is often an obstacle to its
practical use. For example, investing half a day every
iteration on reflecting equals to 5% of the entire team’s
time (four hours out of every two forty-hour weeks). A
high fixed overhead may outweigh the benefits of
reflection, as effective as it may be.

Dingsøyr et al. �[5] report that post-mortem reviews
require an average of 4.7% of the team’s time, or 1.4
hours per person in absolute terms (calculated from
their data). Cockburn �[4] suggests that post-iteration
workshops should take a minimum of two to four
hours. Salo et al. �[15] report an average required effort
of 3.7% or 1.6 hours per person; this number changes
significantly during the four iterations reported there.
However, the post-iteration workshops as practiced in
[15] considered all negative issues raised by team
members, and (for research purposes) did not prioritize
them as commonly recommended.

Our proposed Iteration Summary Meeting practice
requires 1.75 hours per person per iteration, which is
2.1% of the team’s total time (a forty-hour workweek
was used). The reflection element by itself requires at
most one hour (1.25%), and this is in fact the number
that can be compared to the other methods, since all of
them are based on reflection alone. The reduced
overhead in our reflection technique stems from two
facts: That the subject is chosen in advance by the
moderator, and that the meeting has a strict one-hour
limit, which helps in focusing the discussion. As the
previous sections show, these issues do not stand in the
way of making our reflection practice highly effective
and satisfactory to the team. In addition, we recommend
that future teams adopt the entire Iteration Summary

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4.1

Figure 5. Product Size per iteration
� by Entire Team � by Professional Testers

Meeting practice, and not only the reflection element,
since as the results show, it is highly effective and still
requires lower overhead than other proposed practices
(which only contain the reflective component).

6.3. Evolution of Reflections Along Time

In �[14] Salo reports that the duration of the post-

iteration workshop in two studied projects is high in the
first iteration (5.5% and 7.8% of its total time), but
decreases rapidly, and is halved in both projects
between the 2nd and 4th iterations. Similar results are
reported in �[15]. Since all projects analyzed in this
paper had four iterations and were six weeks long, it
seems reasonable to conclude that an XP team’s
process is expected to stabilize roughly within six
weeks. Kähkönen �[10] also suggests that once an agile
team stabilizes, the time between reflection meetings
can be increased, and the need for an external coach
may be reconsidered as well.

Since this paper is the first to report empirical data
from a long-term, industry-based XP project, we can
provide new data regarding these claims. The first and
most obvious finding is that the need for reflection
meetings does not decrease over time – there was no
lack of subjects at any time during the four releases
investigated in this paper. In addition, note that the
questionnaires on which our effectiveness and
satisfaction are based were done several months after
these four releases, so if reflections would lose their
perceived value as the development progressed, this
would have been revealed in the results.

What does happen is that reflections evolve and
change their role over time, from a stabilization role to
a continuous improvement role. To investigate this, we
asked the team leader to state whether each of the
fifteen reflections this paper investigates was an
‘emergency’ reflection – meaning that it dealt with a
problem that seriously endangered the team’s ability to
reach the next iteration’s goals – and whether it dealt
with a technical or an organizational issue.

The results are presented in Table 1. As they show,
the first three months of development, and to a lesser
extent the first five months, consisted mostly of
‘Emergency reflections’. Reflections had a key role in
stabilizing the team’s development process in this period.

In addition, most team members were new to XP,
and another key role of reflection was to communicate
the rationale behind key practices used in the team, and
to enable everyone to speak their mind.

After five months of development, the role of
reflection evolved to be a continuous improvement
forum. Some reflections were triggers by challenges
that were not emergencies, but that the team hasn’t
faced before, such as how to accept four new team
members who joined the team at once, or how to best
split the team when it became too big. Other reflection
meetings at this stage of development were pure
improvement offers, and discussed pair programming,
the defect management process and so forth.

Technical issues were rarely discussed in reflection
meetings: With the exception of the first reflection
(about the project’s immature integration environment),
all emergency reflections were about organizational
and people-focused issues. Two additional technically-
oriented reflections were improvement offers (a new
unit testing utility, and a review of common coding
mistakes) were done, but were not perceived by the
team as highly successful. The team did have plenty of
technical challenges to deal with, but it seems generally
agreed that reflections were not the best forum to do so.
Many team members have little to contribute on such
technical problems (testers, business analysts and
novice programmers), and often feel their time wasted
in such reflections. In addition, the adoption of
technical solutions usually does not face a social
resistance to change, so the reflection’s counter-effect
to this is redundant here.

Based on these findings, we recommend that the
Iteration Summary Meeting practice and reflections in
particular be conducted in every iteration in long
projects as well. They should also be focused on
organizational issues: Technical problems seem to be
best tackled by a small group of 2-3 top developers,
who can later present their solution to the team.

7. Conclusions

This paper analyses the reflection practices of an
agile team in a large-scale, long-term software project
in an industry setting. The results suggest that the
proposed reflective practice is highly valuable for this

Table 1. Properties of Reflection Meetings Over Time

Month Jan March April May June July August
Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Emergency? ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
Technical? ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

kind of projects. Reflection is perceived as effective in
stabilizing a new agile project, fostering continuous
improvement, and resolving team conflicts. In addition,
the satisfaction of team members increases.

The proposed Iteration Summary Meeting practice
extends current approaches to include the customer’s
summary and formal presentation of the system –
which were assessed as more important than the
reflection itself – as well as the review of metrics,
which enables ongoing tracking of high-risk issues and
past decisions. The proposed practice achieves these
additional goals even though it incurs a lower overhead
than current alternative practices. Concrete guidelines
for implementing the proposed practice are provided.

References

[1] Avison, D.; Lau, F.; Myers, M. and Neilsen, P.A.,

"Action Research". Communications of the ACM,
vol. 42, 1999, pp. 94-97.

[2] Beck, K., Extreme Programming Explained:
Embrace Change. Addison-Wesley, 2000 (2nd
Edition in 2005 – with Andres).

[3] Beck, K. et al., "Principles Behind the Agile
Menifesto". Available on World Wide Web at:
http://agilemanifesto.org/principles.htm, 2001.

[4] Cockburn, A., Agile Software Development,
Addison-Wesley, 2001.

[5] Dingsøyr, T. and Hanssen, G. K., "Extending
Agile Methods: Postmortem Reviews as Extended
Feedback". In 4th Intl. Workshop on Advances in
Learning Software Organizations (LSO 2002),
LNCS 2640, Springer 2003, pp. 4-12.

[6] Dubinsky, Y.; Talby, D.; Hazzan, O. and Keren,
A., "Agile Metrics at the Israeli Air Force",
Proceedings of Agile 2005, Colorado, 2005.

[7] Hazzan, O., "The reflective practitioner perspective
in software engineering education", The Journal
of Systems and Software 63(3), 2002, pp. 161-171.

[8] Hazzan, O. and Tomayko, J., "The reflective
practitioner perspective in eXtreme Programming".
Proceedings of XP Agile Universe 2003, New
Orleans, Louisiana, USA, 2003, pp. 51-61.

[9] Hazzan, O. and Tomayko, J., "The reflective
practitioner perspective in software engineering".
Proceedings of CHI 2004 Workshop on
Designing for Reflective Practitioners, ISR
Technical Report #UCI-ISR-04-2, 2004, pp. 75-78.

[10] Kähkönen, T., "Life Cycle Model for Software
Process Improvement Project Deploying an Agile
Method". In ICAM 2005 – Intl. Conf. on Agility,
Helsinki, Finland, July 2005.

[11] Kerth, N. L., Project Retrospectives: A Handbook
for Team Reviews. Dorset House, 2001.

[12] Lamoreux, M., "Improving Agile Team Learning
by Improving Team Reflections". Proceedings of
Agile 2005, Colorado, 2005.

[13] Myllyaho, M., Salo, O.; Kääriäinen, J.; Hyysalo,
J. and Koskela, J., "Analysis of Small and Large
Post-mortem Review Methods". Proceedings of
ICSSEA 2004: 17th Intl. Conf. on Software &
Systems Engineering and their Applications,
Paris, France, December 2004.

[14] Salo, O., "Improving Software Process in Agile
Software Development Projects: Results from Two XP
Case Studies". In EUROMICRO 2004. IEEE Computer
Society Press, Rennes, France, 2004.

[15] Salo, O.; Kolehmainen, K.; Kyllönen, P.;
Löthman, J.; Salmijärvi, S. and Abrahamsson, P.,
"Self-Adaptability of Agile Software Processes: A
Case Study on Post-iteration Workshops".
Proceedings of XP 2004, Germany, 2004, pp.
184-193.

[16] Salo, O., "Systematical Validation of Learning in
Agile Software Development Environment". 7th
International Workshop on Learning Software
Organizations (LSO 2005), Germany, April 2005.

[17] Schön, D. A., The Reflective Practitioner,
BasicBooks, 1983.

[18] Schön, D. A., Educating the Reflective
Practitioner: Towards a New Design for
Teaching and Learning in The Profession.
Jossey-Bass, San Francisco, 1987.

[19] Schön, D. A. interviewed by John Bennent.
"Reflective conversation with materials". Terry
Winograd, Bringing Design to Software,
Addison-Wesley, 1996, pp. 171-184.

[20] Scupin, R., "The KJ Method: A Technique for
Analyzing Data Derived from Japanese
Ethnology". Human Organization, vol. 56, 1997,
pp. 233-237.

[21] Susman, G. I. and Evered, R. D., "An assessment
of the Scientific Merits of Action Research".
Administrative Science Quarterly, vol. 23, 1978,
pp. 582-603.

[22] Talby, D.; Hazzan, O.; Dubinsky, Y. and Keren,
A., "Agile Software Testing in a Large-Scale
Project". To appear in IEEE Software, Special
issue on Software Testing - Jul/Aug 2006.

