
Supporting Priorities and Improving Utilization of the IBM SP Scheduler Using
Slack-Based Backfilling

�
David Talby Dror G. Feitelson

Institute of Computer Science
The Hebrew University, 91904 Jerusalem, Israel

Abstract

Distributed memory parallel systems such as the IBM
SP2 execute jobs using variable partitioning. Scheduling
jobs in FCFS order leads to severe fragmentation and uti-
lization loss, which lead to the development of backfilling
scheudlers such as EASY. This paper presents a backfilling
scheduler that improves EAST in two ways: It supports both
user selected and administrative priorities, and guarantees
a bounded wait time for all jobs. The scheduler gives each
waiting job a slack, which determines how long it may have
to wait before running: ‘important’ and ‘heavy’ jobs will
have little slack in comparison with others. Experimental
results show that the priority scheduler reduces the average
wait time by about 15% relative to EASY in an equal prior-
ities scenario, and is responsive to differential priorities as
well.

1 Introduction

Most currently available distributed memory parallel su-
percomputers require users to request a specific number of
processors for a job they wish to run. When the requested
number of processors becomes available, the job is exe-
cuted, and the processors are dedicated to it until it termi-
nates or is killed. This scheme is called variable partitioning
[3]. Allocating partitions on a FCFS basis results in severe
fragmentation, and typical utilization of such systems is 50-
80% [6, 7, 9, 12]. Two solutions that have proposed to this
problem, dynamic partitioning [11, 1] and gang scheduling
[4] are difficult to implement and do not enjoy much use.

A far simpler approach is to use a non-FCFS policy when
allocating partitions, for example by allowing small jobs
from the back of the queue to be executed while a large
job is waiting for enough processors to be freed. Such an
approach is called backfilling [8, 2]. The EASY scheduler
[10], now part of IBM’s LoadLeveler, uses an aggresive
strategy that backfills a job if it does not delay the first job
in the queue. We recently showed that a more conservative
scheduler, which only backfills a jobs that doesn’t delay any
job in the queue, retains roughly the same performance [5].
Here we present a further improvement based on the notion�

c
�

1999 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

of slack: each job could be backfilled if it does not delay
any other job by more than that job’s slack.

Another consideration is priorities. Supercomputers are
typically used by several groups and projects at once. The
administrators may wish to give each of them a different pri-
ority, or enforce a CPU quota on groups, projects or users.
Different users within a system may also wish to prioritize
themselves, for example when nearing a deadline. Finally,
the scheduler itself may wish to adjust a job’s priority, by
raising it if the job initially had to wait longer than the sys-
tem’s average wait time, or lowering it if the job has been
’lucky’. However, priorities do not exist in a vacuum, and
must be integrated with other considerations such as the
wish to maximize utilization, maintain execution order, and
ensure fairness. As these requirements may conflict with
each other, we need to wieght their influence on the sched-
ule.

The notation used in the following discussion is as fol-
lows. Jobs are denoted by �������	�
� etc. A job may have the
following attributes: � is the required number of processors,�

is the user’s estimate of the runtime,
������
��� and ��� are the
job’s user, political, and scheduler priority (each between 0
and 1),

���
is the arrival time of the job to the queue,

���
is

the time in which the job is scheduled to start executing (it
may change several times before the job actually runs), � is
the weighed priority of the job, � is the job’s current slack,
and � � is the job’s initial slack. Slack will be measured in
units of time. The weights of utilization, time, priorities and
fairness are denoted �����������! "���$#%�&��'(�*) .
2 The Priority Scheduler
2.1 The Algorithm

The priority backfilling algorithm maintains a profile of
scheduled jobs. When a new job is inserted, any other job
may be rescheduled in order to optimize the overall utiliza-
tion, subject to constraints of no preemption and execution
guarantees. The algorithm gives a price to every possible
new schedule, and chooses the cheapest one. The price of
a schedule is the sum of prices of its jobs, and the price of
each job is the product of its delay by the number of pro-
cessors it uses. Formally, a scheduler is an event driven
program that supports three events — insert a new job, re-
move a waiting job, or start or end jobs when reaching the
end of a time slot:
insert(j): Loop over all possible schedules (conceptually)
and give a price to every possible schedule. The price of

1

scheduling � at ��+ � � and delaying � � �,+-+,+-���/. by
� � �-+,+,+-� � .

seconds is infinity if it causes one of the �10 to achieve a neg-
ative slack (if � 0 + �32 � 054 �), and otherwise it is:

��6/7�8:9<;>=?��+ � � 2A@<BDC&E
F���+ �!E�G<H .I 0KJ � 8:L�� � =?�	0�� � 0��M�NC
The cost function determines the cost of delaying � 0 by� 0 seconds in favor of � , and will be discussed later. Cost
will be negative if

� 0 is negative (i.e. if the job is being
moved up rather than being delayed). Note that there
is always at least one schedule of finite price: do what
conservative backfilling would have done. Once we know
what the cheapest schedule is, we adjust the slacks of the
rescheduled jobs (for all 7O;P)
+K+ Q , �/0R+S�T;U�-0�+ ��2 � 0), and
start running jobs that should start now.
Remove(j): Remove � from the profile, and then loop over
all possible schedules and find the cheapest one, exactly as
in insert (remove the job, and insert a dummy timeless job).
Here we expect a negative price — a profit.
Tick(): This is the same as in EASY and conservative
backfilling: simply kill jobs that were supposed to termi-
nate but didn’t, and start executing jobs whose scheduled
execution time is now.

The following two sections describe how the priority and
slack of a new job are determined, and the 8:L�� � =?�10&� � 0����NC
function that prices reschedules of jobs. Section 2.4 ad-
dresses the complexity problem: since there is an exponen-
tial number of possible schedules of Q jobs (which is Q$V),
it is not practical to check each of them in a naive manner.
The last section presents several alternative solutions to this
problem, thereby completing the algorithm’s specification.

2.2 Calculating Priority and Slack
The priority ��+ � of a job is composed of its user, political

and scheduler priorities. The user and political priorities are
given when the job is submitted, but the scheduler priority
is not. The scheduler priority is a number in the range [0,1],
and we wish it to be higher when the job’s initial wait time
is longer.

At first, we assign WYXZ; �� for all jobs. This means
that we want all jobs to wait exactly the average wait time.
Then, we calculate the job’s initial priority:��+ �[; ��+S\]X^HT�
+ X_X`Ha��+SWYXb
Afterwards, we calculate the job’s initial slack:

�
+S� � ;dc =�)e2f��+ �gChWYikj,l<m*B n?op��+ �rqk2Dss t
u&vxw-y&zen|{&w
The constant W5i is the slack factor of the system — it’s
another parameter of the algorithm. In section 2.1 we saw

that giving jobs slack can improve utilization; however, giv-
ing jobs too much slack makes the upper bound on delays
meaningless. The slack factor gives a way to express an
opinion about this tradeoff. The case in which �
+ �};~2Ds
occurs when the user exceeds his or her quota for one of the
system’s resources. The administrator then submits � with��+ X_X�;�2Ds which causes the job to have infinite slack.
This means that this job can suffer an unbounded delay, and
will only run when it’s not disturbing any other job. Once
we have a priority and an initial slack for � , We can compute
the price of each possible schedule. After deciding where
it’s best to execute the new job, its start time ��+ � � will be
defined. Then, we recalculate:�
+SWYX�;^�(nK�(� ��+ ��� 2��a�_m� lDm*B �-)x�
Note that ��+SWYX is zero if � doesn’t wait at all, �� if it waits
the average wait time, and 1 if it waits twice the AWT or
more.

Once we have the new ��+ W5X , we recalculate ��+ � and �
+S� �
according to this new ��+SWYX value, and use the new prior-
ity and slack values from now on. This recalculation takes
place only once — we do not reschedule � after recalculat-
ing its priority and initial slack. These new values will only
have an effect in case of future backfilling attempts.

2.3 Calculating Cost
The cost of moving �/0 by

� 0 seconds in favor of � depends
on the utilization gain or loss that the move causes, the rel-
ative priorities of the two jobs, and the percentage of �10 ’s
slack that was already used. The preference of earlier jobs
is contained in the fact that when two schedules are equally
priced, we’ll choose the schedule with the least number of
moved jobs. Since delaying the new jobs doesn’t ‘count’ as
a delay, older jobs have an advantage over the new one. All
the above considerations are weighed by � � , � , � # , and� ' . To conclude we get:

8:L�� � =?� 0 � � 0 ���NC
;���� ��
�	0R+ � E G � E�F0�� �-0&+ ���+ ��� E1� � �	0�+S� �� 0 +S�!� E1�-EN� n?o � 01���	0&+ �s t�u�vxw,y�zen|{�w

Note that the cost of delaying a job is greater when it uses
more processors, the delay is longer, the job has a higher
priority than the new job, or has already lost most of its
initial slack. The global weights � � �&� �&� # ��� ' govern the
relative importance of each factor.

2.4 Complexity Reduction Heuristics
Basically, the problem at hand is a scheduling problem

of jobs of variable duration with no preemption, variable
deadlines, a resource constraint on processors, and variable
costs for delaying a job. Not surprisingly, this is a NP-hard
problem.

2

The following exponential algorithm finds the optimal
(cheapest) schedule for inserting a job � into a profile: for
each time slot

� � in the profile starting with NOW, delay all
waiting jobs from

� � to the profile’s end by ��+ � , and insert �
as the only job scheduled for time

� � . Then, compress the
schedule in every possible way, and remember the cheapest
schedule. Note that when trying to assign the new job to a
time slot we don’t have to try to change jobs that are sched-
uled for earlier slots, since we assume that the schedule was
optimal before the new job was submitted.

If Q jobs were delayed in this manner, there may be QpV
schedules to check, because every permutation of the de-
layed jobs defines an order in which the delayed jobs can
be compressed, and each such permutation can create a dif-
ferent schedule with a different price. However, in many
cases only few of these permutations will be worth check-
ing. Consider, for example, a scenario in which ten jobs,
all requiring all the processors in the system, are in the
queue, and a new such job arrives. Clearly the best sched-
ule is the one in which the more expensive jobs are executed
first — that is, jobs are scheduled according to descending8:L�� � =?�	0��-)
�,�p�h9	�DC . The suggested algorithm will still try)	�xV
schedules, and as profiles in practice can be as long as a
hundred jobs, it is impractical.

Several heuristics can be offered for choosing which per-
mutations are checked. These heuristics choose one per-
mutation to consider in each iteration — this approach still
requires �(=��!�	C time to insert or remove a job.

Ascending Scheduled Time (AST) — Sort the delayed
jobs by their scheduled time (before the delay), and
check this permutation only. This heuristic tries the
most to preserve the current ordering of the delayed
jobs.

Ascending Arrival Time (AAT) — Sort the delayed jobs
by their ��+ � � , and check this permutation only. This
benefits jobs that are already waiting longer.

Descending Utilization (DU) — Check the permutation
that results from sorting the delayed jobs by descend-
ing �	0&+ ��j/�	0�+ � . This heuristic acknowledges that jobs
with higher utilization are likely to be delayed more
because of their size, and therefore they should be
scheduled first.

Descending Cost (DC) — Sort the delayed jobs by de-
scending cost to delay the jobs for one second, and
check this permutation only. This way ‘expensive’
jobs will be delayed less, and priorities and fair share
issues will also be considered.

Descending Priority (DP) — Reschedule first the jobs
whose priorities are highest. For the common case of
equal priorities, a secondary sort by ascending arrival
time was also used. This heuristic is expected to be
more responsive to priorities.

Average Wait Time
Sept 440.6 440.6 0.0%
Oct 3062.7 2504.3 18.2%
Nov 4887.0 3774.6 22.8%
Dec 2157.2 1904.2 11.7%
Jan ’97 3302.3 2531.9 23.3%
Feb 2624.3 2373.9 9.5%
March 2644.8 2196.9 16.9%
April 2220.3 1905.2 14.2%
May 2093.6 1779.2 15.0%
June 1443.2 1282.0 11.2%
July 399.9 354.1 11.5%
August 1941.5 1670.8 13.9%
Average 2401.44 2004.46 16.5%

Table 1. Simulation results of priority backfilling
compared to conservative backfilling.

3 Experimental Results
3.1 The Simulator

A simulator for testing the conservative and priority
schedulers was written in C++, implementing all aspects of
both algorithms. Jobs that exceeded their declared runtime
were immediately killed.

The logs used for the simulations were the Swedish
Royal Institute of Technology (KTH) files from Septem-
ber 1996 to August 1997. The average number of jobs per
month is 2357 and the average wait time of the system with
128 processors, under the conservative scheduler (which is
nearly the same as the average wait time obtained by EASY
scheduling) is 2401 seconds. The logs contain, for each job,
the number of processors and both the estimated and actual
runtimes of the job. Hence the tests do not require a model
of the human ability to estimate runtimes, and use actual
numbers.

3.2 Equal Priorities
The following simulations tested the performance of the

priority scheduler against those of the conservative sched-
uler, assuming that all jobs have equal user and political
priorities and an unlimited quota. The following parame-
ters were used for the priority scheduler: ����;*�� 5;*�h#�;��'�;�) , SF = 3, AWT = 2401, Heuristic = AST.

The results in Table 1 show an average reduction of
16.5% in wait time over conservative scheduling (which has
almost identical performance compared to that of the EASY
scheduler). Except for September ’96 in which only 85 jobs
were executed, the algorithm performs well on a variety of
workloads. Logs of other months included between 1924
and 4060 jobs. This implies that priority scheduling is use-
ful as is, even without using the option to assign priorities.
The overall average was calculated correctly — not as the

3

SF 1 3 5 7 9 11
AWT 2156 2004 2027 1986 1939 1956

Table 2. Dependence of AWT on the slack factor.

average of the rows above it, but as the quotient of the total
wait time by the total number of jobs throughout the year.

The scheduler can be adjusted by several parameters: the
slack factor, the average wait time, the heuristic used, and
the weights given to each priority requirement. The effect of
the first three is considered next, and the fourth is deffered
until the next section.

The same simulation using larger slack factors mod-
estly improved the results (19.25% average improvement
for SF=9, see Table 2). However, giving too much slack to
jobs increases the extent to which jobs can be starved —
for example, a slack factor of nine means that a job can be
delayed up to nine times the average wait time (see section
2.2). Therefore a small slack factor, which still gives signif-
icant improvements, seems like the best tradeoff.

The average wait time used for all months was the same
— the yearly average. A good estimation of the AWT is
important: using a very small value causes the algorithm
to collapse to conservative scheduling (too little slack im-
plies inability to delay jobs), and using a very large value
increases the risk of (bounded) starvation. The yearly AWT
is usually known to administrators or can be derived from
logs, and presents no practical problem. Our attempts to
improve and automate the AWT estimation were in vain:
using a monthly instead of the yearly AWT separately for
each month produced slightly worse results, and using a
running average method to update the AWT dynamically
caused significantly worse performance. Finding a better
prophet of changing workload characteristic is a desirable
future research direction.

The ascending scheduled time heuristic used to obtain
the above results is the one that gives the best performance.
Ascending arrival time gave an average improvement of
13% over conservative scheduling, descending priority gave
an average improvement of 11.7%, descending cost gave
9.2% and descending utilization gave 8.1% (see table 5).
Notably all heuristics improve conservative scheduling (and
hence, EASY as well).

3.3 Differential Priorities
To test how well the algorithm schedules jobs with a

higher priority then others, the following mechanism was
used. For each of the twelve monthly logs, each fifth job
was given a user priority of 1.0 and a political priority of
1.0, and all other jobs were given zero for both the user
and political priorities. This simulates a scenario in which
a user or a group have a considerably higher priority than
others, and they submit jobs uniformly. It was implicitly as-
sumed that the ‘fifth jobs’ distribute identically compared

Equal Unequal Priorities
Month Pri All Jobs Hi-Pri Lo-Pri
Sept 440.6 440.6 0.0 550.8
Oct 2504.3 2783.7 2295.6 2906.0
Nov 3774.6 4797.7 4460.2 1882.3
Dec 1904.2 2026.0 1814.8 2078.8
Jan ’97 2531.9 2777.4 2603.8 2820.8
Feb 2373.9 2728.7 2369.2 2818.7
March 2196.9 2220.9 1687.2 2354.6
April 1905.2 2056.2 1797.4 2120.9
May 1779.2 1889.3 1491.9 1988.7
June 1282.0 1374.7 1323.3 1387.6
July 354.1 372.6 320.2 385.8
August 1670.8 1847.1 1817.5 1854.5
Average 2004.46 2226.17 1955.28 2294

Table 3. Simulation results of priority backfilling
with differential priorities.

gap 0 0.5 1 1.5 2
AWT 2004.46 2020.40 2044.39 2017.82 2226.17

Table 4. Dependence of the overall AWT on the pri-
ority gap.

to other jobs regarding wanted time, used time, proces-
sors and so on. The results, summed in table 3, were re-
ceived using the same parameters as in the previous section:����;*�� �;*�$#O;���'(;�) , SF = 3, AWT = 2401, Heuristic
= AST

The results show that the priority change decreased the
average wait time of the preferred jobs by 2.5% but in-
creased the wait time of the other jobs by 3.9%, compared
to the best results achieved with equal priorities. In total,
assigning different priorities had, as expected, a cost — the
average wait time of the entire system rose by 11.1%, from
2004.5 to 2226.2 seconds. This is still an improvement
over conservative scheduling and EASY, and the decision
of whether to support priorities or maximize system per-
formance is in the administrators’ hands. In any case, the
priority scheduler outperforms conservative scheduling and
EASY.

The above simulations, as mentioned above, gave a ran-
dom group of 20% of the jobs a user plus political priority of
two against zero to the other jobs. Other simulations using a
smaller gap exhibited a smaller, but still positive, difference
in the average wait time between the groups. Table 4 shows
the average wait time of the entire system as a function of
the gap. With the exception of the maximal gap, the over-
all AWT was very close to the optimum (which is obtained
with zero gap, e.g. in equal priorities). This means that
in most cases the prioritization does not lead to a general
degradation of service.

4

Ascend Ascend Descend Descend Descend
Sched Arrival Cost Util Pri

Equal Pri 2004.5 2088.5 2179.9 2206.0 2120.0
Unequal Pri 2226.2 2223.3 2250.1 2279.8 2228.5
Perf Loss � 11.1% 10.9% 12.3% 13.7% 11.2%
Hi-Pri Jobs 1955.3 1952.6 1988.1 2048.9 1962.3
Lo-Pri Jobs 2294.0 2291.1 2315.7 2337.6 2295.1
Gap � 338.7 338.5 327.6 288.7 332.7

The ratio of increase in the total AWT due to the differential priorities,
relative to the best result with equal priorities which is with AST.¡

The average difference between the low priority group and the high pri-
ority group AWT.

Table 5. Simulation results comparing various com-
plexity reduction heuristics.

Other simulations tested the effect of increasing the im-
portance of priority in contrast with time, utilization and
fairness, for example by assigning �!#�;¢) , ���`;£�! [;��'*;P��+ � . These tests indicated a slight increase in the
wait time gap between the preferred and the regular groups,
but also exhibited a considerable degradation of the aver-
age wait time of both groups. In several cases, the average
wait time of the preferred group was worse than that of the� � ;>� ;¤� # ;¤� ' ;¥) setting. It seems that a high � �
and � are crucial to the effectiveness of the scheduler.

The results that were achieved using the descending
scheduled time heuristic were actually only the second best.
Descending arrival time performed marginally better. De-
scending priority is also very close, hinting that this per-
formance level is probably the best that can be expected.
The results of all five heuristics are summarized in Table 5.
They were all tested using the full set of logs. All numbers
are yearly averages, in seconds.

4 Conclusions

The many production installations of EASY around the
world prove that backfilling is advantageous over FCFS al-
location of processors to jobs. The ability to backfill in-
creases the overall system performance by being more re-
sponsive to short jobs, while preventing the starvation of
long batch jobs. We have presented an algorithm that sig-
nificantly outperforms EASY and conservative scheduling
in simulations, which is based on the notion of slack. The
priority scheduler also supports assigning differential prior-
ities to jobs and is responsive to such requests, although a
small penalty for prefering priorities over utilization is in-
evitable. The algorithm also includes a set of parameters
to control its behavior, whose effects have been analyzed as
well. Although backfilling was originally developed for the
SP2, and was so far tested using workload traces from SP2
sites only, it is applicable to any other system using vari-

able partitioning. This includes most distributed memory
parallel systems in the market today.

Acknowledgements
This research was supported by the Ministry of Sci-

ence and Technology. Thanks to Lars Malinowsky of
KTH for his help with the workload traces. This trace is
now available from the parallel workloads archive at URL
http://www.cs.huji.ac.il/labs/parallel/workload/.

References
[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and

H. M. Levy, “Scheduler activations: effective kernel support
for the user-level management of parallelism”. ACM Trans.
Comput. Syst. 10(1), pp. 53–79, Feb 1992.

[2] D. Das Sharma and D. K. Pradhan, “Job scheduling in mesh
multicomputers”. In Intl. Conf. Parallel Processing, vol. II,
pp. 251–258, Aug 1994.

[3] D. G. Feitelson, A Survey of Scheduling in Multiprogrammed
Parallel Systems. Research Report RC 19790 (87657), IBM
T. J. Watson Research Center, Oct 1994.

[4] D. G. Feitelson and M. A. Jette, “Improved utilization and
responsiveness with gang scheduling”. In Job Schedul-
ing Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 238–261, Springer Verlag, 1997. Lect.
Notes Comput. Sci. vol. 1291.

[5] D. G. Feitelson and A. Mu’alem Weil, “Utilization and pre-
dictability in scheduling the IBM SP2 with backfilling”. In
12th Intl. Parallel Processing Symp., pp. 542–546, Apr 1998.

[6] D. G. Feitelson and B. Nitzberg, “Job characteristics of a
production parallel scientific workload on the NASA Ames
iPSC/860”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 337–360,
Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[7] S. Hotovy, “Workload evolution on the Cornell Theory Cen-
ter IBM SP2”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 27–40,
Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

[8] Intel Corp., iPSC/860 Multi-User Accounting, Control, and
Scheduling Utilities Manual. Order number 312261-002,
May 1992.

[9] P. Krueger, T-H. Lai, and V. A. Dixit-Radiya, “Job schedul-
ing is more important than processor allocation for hyper-
cube computers”. IEEE Trans. Parallel & Distributed Syst.
5(5), pp. 488–497, May 1994.

[10] D. Lifka, “The ANL/IBM SP scheduling system”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitel-
son and L. Rudolph (eds.), pp. 295–303, Springer-Verlag,
1995. Lect. Notes Comput. Sci. vol. 949.

[11] C. McCann, R. Vaswani, and J. Zahorjan, “A dynamic
processor allocation policy for multiprogrammed shared-
memory multiprocessors”. ACM Trans. Comput. Syst. 11(2),
pp. 146–178, May 1993.

[12] P. Messina, “The Concurrent Supercomputing Consortium:
year 1”. IEEE Parallel & Distributed Technology 1(1),
pp. 9–16, Feb 1993.

5

