The Databases Course

Solution of Exercise No. 10

Datalog and Concurrency Control

Question 1

1. Same-gen(X,Y) :- child-of(X,Z), child-of(Y,Z).
Same-gen(X,Y) :- child-of(X,P), child-of(Y,Q), same-gen(P,Q).

2. Odd-path(X,Y) :- G(X,Y)
Odd-path(X,Y) :- G(X,P), G(P,Q), Odd-path(Q,Y)
Odd-vertex(X,Y) :- odd-path(X,X)

3. 1-col-paths(X,Y,C1) :- G(X,Y,C1)
1-col-paths(X,Y,C1) :- 1-col-paths(X,Z,C1), 1-col-paths(Z,Y,C1)
2-col-paths(X,Y,C1,C2) :- 1-col-paths(X,Z,C1), 1-col-paths(Z,Y,C2), ((C1,C2)

Question 2

1. Proof by induction on the structure of Q. Basis: If Q = R1 and R1 has attributes a1, …, am then the equivalent datalog program is:
Q(A1,…,Am) :- R1(A1,…Am).
If Q = R1 ( R2 and the datalog queries that we have by induction for R1, R2 are Q1, Q2 then the equivalent of Q is:
Q(A1,…,Am) :- Q1(A1,…,Am)
Q(A1,…,Am) :- Q2(A1,…,Am)
If Q = R1 ( R2 then, we the above notation:
Q(A1,…,Am,B1,…,Br) :- Q1(A1,…,Am), Q2(B1,…,Br)
If Q = (Ai1,…,Aim(R1) then:
Q(Ai1,…,Aim) :- Q1(A1,…,An)
Note that this query is secure: Not all variables in the body have to appear in the head – safety only demands that all variables that appear in the head will appear (in a positive atom) in the body).

If Q = (cond(R1) where cond is Ai > Aj for example (other cases are the same) then the datalog query is:
Q(A1,…,Am) :- Q1(A1,…,Am), >(Ai,Aj)
In exercise 2 question 2 you proved that all other complex conditions can be represented by =(X,Y), >(X,Y) and the other algebra operators.
If Q = R1 – R2 then the datalog query is:
Q(A1,…,Am) :- Q1(A1,…,Am), (Q2(A1,…,Am)
The proof is complete because we proved the induction step for all cases.

2. The set of algebra queries that can be represented by datalog programs without negation is the set of queries that can be written without the minus operator. This is because as we shown in (a) any algebra query without the minus operator can be represented by datalog without negation, and because we know that it is impossible to represent minus without negation, because minus is non-monotonic and datalog without negation is monotonic.

Question 3

Let Q be a safe datalog query, possibly with negation, with an active domain DQ. Let D be a superset of DQ – we’ll prove that QDq = QD. Then, for each two supersets D1, D2 of DQ we’ll have QDq = QD1 and QDq = QD2 and by transitivity QD1 = QD2.

For each conclusion R(a1,…,an), we have to prove that it belongs to the result of QDq iff it belongs to the result of QD. Let R(a1,…,an) be in the result of QD1. Then by definition there is a rule H:-B in Q and an assignment ( such that ((B) ( QD1 and ((H) = R(a1,…,an).

Because Q is safe, then every variable in the domain of ( appears at least once in a positive atom. This means that ( only uses constants from the active domain, as we’ll prove by splitting to two cases. First, If H:-B uses only EDB predicates in B, then clearly any assignment that assigns variables to values such that ((B) ( QD1 must only use constants from the EDB or B itself – and that is how the active domain DQ is defined. Second, if H:-B uses IDB predicates, then because all “useful” (in the sense of creating conclusions) assignments of EDB-rules only assign values from the active domain, then all conclusions from such rules must only contain values from the active domain Therefore, by induction, all further useful assignments will only use values from the active domain – because safety ensures that every variable must appear in a positive atom, and an assignment to a positive atom is only ‘true’ when the assigned constants already exist in a tuple of that predicate. We conclude that because all conclusions of running Q on D1 must come from DQ, then QD1 ( QDq.

We also need to show that QDq ( QD1, or the fact that enlarging DQ to D1 doesn’t remove conclusions that were previously true. This is true because that every assignment ( that produced a conclusion in QDq is still a legal assignment under D1 (its range is contained in D1 because D1 ( DQ). ( Also produces the same conclusion it produced under DQ, because the addition of new constants in D1 doesn’t change the EDB or the IDB rules themselves, and there if for a rule H:-B all of ((B) was true in DQ, then it must also be true in D1, and produce the same conclusion ((H).

We showed QD1 ( QDq and QDq ( QD1 for any D1, therefore QDq = QD and the proof is complete.

Question 4

Because we must use two transactions and two items, then the absolute minimum for producing a schedule as requested has four Lock-Unlock steps (eight actions). We can’t use fewer steps because in order to have a circle we must have at least two arcs in the schedule graph; therefore each transaction must lock and unlock each item at least once, which gives a minimum of four steps.

The following schedule has four steps and is not serializable:

T1:LOCK(A),T1:UNLOCK(A),T2:LOCK(B),T2:UNLOCK(B),T1:LOCK(B),
T1:UNLOCK(B),T2:LOCK(A),T2:UNLOCK(A)

This schedule’s graph has two vertices T1,T2 and two arcs T1(T2 and T2(T1. So a trivial circle is created, and the schedule is not serializable.

Note that if we needed to schedule only one item, a shorter schedule was possible:

T1:LOCK(A),T1:UNLOCK(A),T2:LOCK(A),T2:UNLOCK(A),T1:LOCK(A),
T1:UNLOCK(A)

But the question required scheduling two items.

Question 5

1. The schedule graph of the given schedule G=<V,E> is:
V = { T1, T2, T3, T4 }
E = { T1(T3, T1(T4, T3(T4, T4(T2 }

2. The graph doesn’t have circles so an equivalent serial schedule exists. The algorithm to find it is simply to run topological sort on the graph, which gives the following serial schedule: T1, T3, T4, T2.

3. If we add this to the end of the schedule: T1:LOCK(A), T1:UNLOCK(A)
then the edge T4(T1 will be added to the edges set of G, and then the graph will contain a circle T1(T3(T4(T2(T1, and won’t be serializable.

Question 6

1. For example, let’s assume that T1 and T2 both need an item A for reading only. If each of them takes an hour to complete, then with read locks (which will enable both T1 and T2 to work concurrently on A) both transactions will finish in an hour. Without read locks, one of the transactions will have to wait for the other to finish first, and the total running time will be two hours. Of course, there could be more than two transactions trying to access A concurrently, and with different running times, but this is not the point – the point is that if something can be done faster, there’s no reason not to do it as fast as possible.

2. Yes, read locks are necessary to ensure the correctness of a set of transactions running in parallel. For example, consider the following schedule:
T1 – reads item A (and doesn’t lock it)
T2:LOCK(A) – T2 takes a write lock on A
T2 computes A := A + 1
T2:UNLOCK(A) – T2 writes the new value of A
T1 computes A := A + 1  – but T1 is using the old A here!
T1 print A to the user – then A0+1 is printed instead of A0+2!
Transactions that read an item must know that its value is valid and does not change while it is in their memory, as happened in the above schedule. Read locks prevent other transactions from changing A’s value after someone else read it and is still using its value. 

