The Databases Course

Solution of Exercise No. 4

Relational Algebra, Calculus and QBE

Question 1

Because the solution of exercise 3 was not published before the submission date of exercise 4, anyone who lost points for exactly the same mistake in both exercises can appeal, and we won’t take off points twice for the exact same error.

1. {  (p1,p2)  |  (s(j1(j2[ shipments(s,p1,j1) ^ shipments(s,p1,j2) ^ p1 >p2 ] }

2. {  p  | (n(c(w(t(n1(c1(w1(t1 [ parts(p,n,c,w,t) ( parts(‘p1’,n1,c1,w1,t1) ( 
          w > w1 ] }

3. {  j  |  (x1(x2[ projects(j,x1,x2) ( 
(s(p[ ( shipments(s,p,j) ( (x3(x4(x5[ parts(p,x3,’Red’,x4,x5) ] ] ] }

4. {  c  |  (p(n(w(t(s(j[ parts(p,n,c,w,t) ( shipments(s,p,j) ( s = ‘s5’ ] }

5. {  n  |  (j(c[ projects(j,n,c) ( ((x1(x2(x3[ suppliers(x1,x2,x3,c) ] ] }

6. {  s  |  (p[ (j[ (x1(x2[ projects(j,x1,x2) ] ( shipments(s,p,j) ] ] }

Question 2
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1. Question 3

2. Π drinker ( Frequents ( Π drinker,bar ( Likes (( Serves ) )
    {  t  |  (l1(f1[ ( ( Likes(l1) ( t[1] = l1[1] ) ( ( Frequents(f1) ( t[1] = f1[1] ) (
              ((l2(f2[ Frequents(f2) ( Likes(l2) ( l2[1] = t[1] ( f2[1] = t[1] (
                             ((s[ Serves(s) ( s[1] = f2[2] ( s[2] = f2[2] ] ] ] }

3. Π drinker ( Likes ( Frequents) –
   Π drinker ( Frequents ((  Likes (( Serves ) )
    {  t  |  (l1(f1[ ( ( Likes(l1) ( t[1] = l1[1] ) ( ( Frequents(f1) ( t[1] = f1[1] ) (
              ((l2(f2[ Frequents(f2) ( Likes(l2) ( l2[1] = t[1] ( f2[1] = t[1] (
                             (s[ Serves(s) ( s[1] = f2[2] ( s[2] = f2[2] ] ] ] }

Question 4

Both queries are not monotone. We will prove this by showing a counter example, which will be the database:

Frequents = { (Billie, Red Horse), (Joe, Green Beetle) }

Serves = { (Red Horse, Heineken), (Green Beetle, Goldstar) }

Likes = { (Billie, Heineken) }

Under this database, the two queries from the previous question evaluate to:

Qa = { (Billie) }

Qb = { (Joe) }

However, if we add this tuple to the Frequents() relation:


Frequents’ = Frequents ( { (Billie, Mad Bull) }

Then the answer of query a will be empty – in contrast to monotonicity.

If we add this tuple to the Likes() relation:


Likes’ = Likes ( { (Joe, Goldstar) }

Then the answer of query b will be empty – also in contrast to monotonicity.

Giving a formal proof to this question required such a counter example. Intuitive explanations are not considered a proof!

Question 5

This question absolutely demanded four complete proofs, one for each operator. Short answers such as “subtraction is the only non-monotone operator, and there exist non-monotone queries” are not acceptable – this is just a claim that must be formally proved. The same goes for the other operators. For example, in order to show that the union operator is necessary:

Lemma: Let R1 = { (a,b) } and R2 = { (c,d) } be two relation with two attributes each, then no relational algebra query that doesn’t use the union operator can create a result relation with one tuples starting with ‘a’ and another tuple starting with ‘c’.

Proof: By induction on the structure of a query Q. Induction Basis: If Q is a basic query then either Q = R1 or Q = R2, and neither R1 no R2 contain both a tuple that starts with ‘a’ and a tuple that starts with ‘c’. Induction step: If R = Πs(R’) then since R’ doesn’t contain two such tuples (induction assumption) and Π  does not create new lines, then R will also not contain the two desired lines. If R = R’ – R’’, then since R’ doesn’t contain both desired lines and R ( R’ is a property of the minus operator, then R won’t contain the desired lines neither. If R = σ  F (R’) then again since R’ doesn’t contain the desired lines and R ( R’ is a property of the selection operator, R won’t contain the desired lines neither. If R = R’ ( R’’, then since R’ doesn’t contain both desired lines, and since lines in R will only start with lines from R’, then R won’t contain both desired lines. We proved for all forms of R, and so the induction step (and the proof) is complete.

Since there exists a query which gives as a result a relation containing two lines starting with ‘a’ and ‘c’ accordingly – that is the query R1 ( R2, of course – the above lemma demonstrates that the union operator is necessary (in the sense that dropping it would make the algebra incomplete).

Question 6

Let p = argmaxi=1..n { ti } then the greatest result relation that can be reached using q operators is Rp ( Rp ( … ( Rp, that is the largest relation multiplied by itself q times. Because the question constrained us to q operators, this bound also exists in the SQL model (as we defined it in class). A formal proof of the above statements would be very welcome.

