The Databases Course

Solution of Exercise No. 6

Design Theory

Question 1

Soundness of Reflexivity: If two lines of a relation R are identical in a group of fields X, then X ( X means that two such lines must be equal at X. But these is trivially true for every two lines which are equal at X.

Soundness of Accumulation: Let R be a relation for which X ( YZ and Z ( CW is true. That is, every two relation that are identical at X must also be identical at Y and Z. Because Z ( CW, then every two such lines must also be identical at C. We conclude that every two lines that are identical at X must also be identical at Y,Z and C which means by definition X ( YZC.

Soundness of Projectivity: If in a relation R the dependency X ( YZ is true, then for every two lines that are equal at the fields in X, these lines must also be equal at all the fields of Y and Z. Then X ( Y is true for R, since this means specifically that for every two lines that are equal in X, they are also equal in Y.

Proving A1: Let Y ( X, then there exists Z so that X = YZ. By reflexivity X ( X, by assignment X ( YZ, and by projectivity X ( Y.

Proving A2: Let X ( Y. By reflexivity WX ( WX. By assigning [X=WX, Y=W, Z=X, C=Y, W=(] to the definition of accumulation we get WX ( WXY. Note that X,Y,W are groups of fields and so XW=WX and WXY=YWX, so by assignment we get XW ( YWX, and by projectivity XW ( YW.

Proving A3: Let X ( Y, Y ( Z. By assigning to the definition of accumulation [X=X, Y=(, Z=Y, C=Z, W=(] we get X ( YZ. Note that because Y,Z are groups of fields than YZ=ZY, so by assignment we get X ( ZY and by projectivity X ( Z.

Question 2

1. First, we change all the dependencies in F so that they have atomic derivatives:
F’ = { A ( B, A ( C, BD ( E, B ( C, ACF ( E, BC ( F, AD ( C }.
Then, we remove redundant attributes. Both C and F can be removed from [ACF ( E] because F’ – ‘ACF ( E’ + ‘AC ( E’  |-  F’ (and this means that F is redundant), and the same is true for C. The C attribute can also be removed from ‘BC ( F’ because B ( C is in F’. The A attribute can be removed from ‘AD ( C’ because A ( C is already known. No more attributes can be removed, and we get at the end of this stage:
F’’ = { A ( B, A ( C, BD ( E, B ( C, A ( E, B ( F, D ( C }.
Now we need to remove redundant dependencies. A ( C is redundant because we can deduce it from transitivity and A ( B, B ( C. No other dependency is redundant, so the final answer is (in a compact format):
F’’’ = { A ( BE, B ( CF, BD ( E, D ( C }.

2. Due to graphic constraints I won’t actually draw a table. We have X = {B, D}. First we go over the B attribute dependencies, which gives X’ = { B, D, C, F}. Then we go over the D attribute, which gives X’’ = { B, D, C, F, E }. Then we go over each of C, F, E in three more separate iterations, but this doesn’t change X’’, so the final answer is X+ = X’’.

3. An elementary key is { A, D } – running the table algorithm to find this group’s closure will give the entire schema (you should have given the complete proof in your answer). Therefore, { A, B, D} is a superkey, because it is obviously a key (it contains a key {A, D}) and if the B attribute is removed we still get a valid key.

Question 3

Let F = { A ( B, B ( A, A ( C, E ( A, B ( C, C ( B, D ( B, C ( D, D ( E}. Then these are two non-redundant covers of F:

G1 = { A ( B, B ( C, C ( D, D ( E, E ( A}.

G2 = { A ( B, B ( A, B ( C, C ( A, A ( D, D ( E, E ( A}.

You should have given full proofs of your examples (by running the table algorithm in different ways to show how the different results are accepted).

Question 4

Consider this example: F = { AB ( C, C ( B, A ( B}. If we remove redundant dependencies first then the algorithm would work as follows: All dependencies already have atomic derivatives, we try to remove redundant dependencies and see that we have none to remove, and then we try to remove redundant attributes and remove ‘B’ from ‘AB ( C’. We get a final answer of F’ = {A ( C, C ( B, A ( B} but this is not a non-redundant cover since the dependency ‘A ( B’ is redundant in F’. This is a counter example that shows that redundant attributes must be removed first (and doing so indeed gives the correct answer in this case).

Question 5

Let’s assume that we ran the algorithm on F and got a result G.

The lemma that states that any set of dependencies F’ that we have during the algorithm (including G which we have at the end) satisfies F+=F’+ was taught in class (it is trivial to prove by induction on the number of changes on F).

By negation, let’s assume that G contains a dependency XAY ( Z where A is a redundant attribute. This means that G – ‘XAY ( Z’ + ‘XY ( Z’  |-  G. There exists a proof of this logic sentence which uses (1, …, (n elements of G. Note that F ( G and so (1, …, (n are also members of F+, and so the above derivation is also true for F (because in every step in the algorithm, we only remove a dependency or attribute from F to create F’ if we first make sure that F+ = F’+). Then, we could have also deduced that F – ‘XAY ( Z’ + ‘XY ( Z’  |-  F and remove the redundant attribute from F in the algorithm, but we didn’t, which is a contradiction. In short, because the closure F+ stays constant throughout the algorithm, it is impossible that there are proofs in G ( F that are not valid from F.

By negation, let’s assume that G contains a redundant dependency X ( Y. This means that we can prove G – ‘X ( Y’  |-  G. Because G ( F then, as taught in the logic course, F – ‘X ( Y’  |-  G and because F+=G+ we get F – ‘X ( Y’  |- F. This means that we could have removed ‘X ( Y’ from F during the algorithm itself, but we didn’t (otherwise X ( Y wouldn’t be in G), which is a contradiction.

