The Databases Course

Solution of Exercise No. 8

More Design Theory

Question 1

1. We’ll use the algorithm taught in class. All the dependencies of F already have atomic derivatives. There are no redundant attributes. There is one redundant dependency to remove: AB ( C can be derived from A ( D  |-  AB ( BD, BD ( C  |-  AB ( C. Therefore G = { A ( D, BD ( C } is a non-redundant cover of F.

2. Let ( = { AD, BCD }. The scheme (AD) is in 3NF because it has only two attributes, and the scheme (BCD) is in 3NF because its dependencies set includes only BC ( D, and BC is a key of (BCD). Preservation:
X0 = { A } , X1 = X0 ({ X0 ( AD)+F ( AD } = A ( (AD ( AD) = AD
X’0 = { BD } , X’1 = X’0 ({ X’0 ( BCD)+F ( BCD } = BD ( (BCD ( BCD) = BCD
Because D ( X0 and C ( X’0 , both dependencies are preserved.

3. A ( D is projected to (AD), and BC ( D is projected to (BCD).

4. The answer from (b) is not a lossless join, because the intersection of the two sub-schemes is { D } and it is not a key in neither of the sub-schemes. In order to make this decomposition lossless, we’ll add a simple key { AB } to it and receive the decomposition (’ = { AD, BCD, AB }. This decomposition is lossless, dependency preserving and in 3NF because it is the decomposition that is received from running the normalizing algorithm that was taught in class (the decomposition ( is received at stage 4 of the algorithm, and (’ is received at its end).

Question 2

1. A ( B is projected to (AB), A ( C is projected to (AC), and no dependency is projected to (BD).

2. No, ( doesn’t preserve all the dependencies. Specifically, A ( D is not preserved, because:
X0 = { A }
X1 = X0 ({ X0 ( AB)+F ( AB } = A ( (ABCD ( AB) = { AB }
X2 = X1 ({ X0 ( AC)+F ( AC } = AB ( (ABCD ( AC) = { ABC }
X3 = X2 ({ X0 ( BD)+F ( BD } = ABC ( (BC ( BD) = { ABC }
Further iterations cannot change X3, but D ( X3, therefore A ( D is not preserved by (.

3. The tables algorithm tests a decomposition ( for being lossless.
Table initialization:


A
B
C
D

AB
a1
a2
b13
b14

AC
a1
b22
a3
b24

BD
b31
a2
b33
a4

     By activating A ( B we assign v22 = v12 = a2:


A
B
C
D

AB
a1
a2
b13
b14

AC
a1
a2
a3
b24

BD
b31
a2
b33
a4

     By activating B ( C we assign v13 = v23 = a3 and v33 = v23 = a3:


A
B
C
D

AB
a1
a2
a3
b14

AC
a1
b22
a3
b24

BD
b31
a2
a3
a4

     By activating A ( D we assign v14 = v24 = b24:


A
B
C
D

AB
a1
a2
b13
b24

AC
a1
b22
a3
b24

BD
b31
a2
b33
a4

Now there is no possible activation of the dependencies that will change the table, and there is no line that contains only ‘ai’ – therefore, ( is not lossless.

Question 3

Given < R, S, F > the following algorithm finds an elementary (=simple) key of R:

find-key(R, S, F)


K := S


for all Ai ( K do



if  [K – Ai ( Ai] ( F+  then  K := K – Ai


return K

Lemma 1: At every stage of the algorithm’s execution, K is a key of R.

Proof: By induction on the size of K. For n = |S|, we assigned K = S and so by AA1, K is a key of R. Let’s assume that K’s size was n and now it is n-1. The only occasion in which this can happen is when we remove Ai because [K – Ai ( Ai] ( F+ and therefore after we remove Ai from K, every dependency of the type AiX ( Y where X ( [K – Ai] that existed in F+ is still derivable from K – Ai. The derivation is:
K – Ai ( Ai, K – Ai ( X (by AA1)   |-  K – Ai ( AiX, AiX ( Y  |-  K – Ai ( Y

Lemma 2: The algorithm returns an elementary key.

Proof: By lemma 1 the algorithm returns a key. To prove that this key is elementary, let’s assume by negation that there exists K’ ( K such that K’ is a key and is a real subset of K. So there exists A ( K such that A ( K’. K’ ( A ( F+ because K’ is a key. K – A ( A ( F+ because of K’ ( K. But according to the algorithm if the dependency K – A ( A ( F+ then we would have removed A from K, but we assumed that A ( K, which is a contradiction. To complete the proof we should also note that it doesn’t matter at which iteration of the algorithm we checked if 
K – A ( A ( F+ because F+ remains constant and K is a key of R at every stage of the algorithm’s execution.

Running Time: The running time of the algorithm is O( |F| ( |S| ), where |F| is the number of dependencies with atomic derivatives. This is because an algorithm taught in class tests whether A ( B ( F+ for given A,B,F in O( |F| ) time, and the algorithm makes |S| such tests (because of the way K is initialized). The initialization and finalization parts take O(1) time, therefore the total running time of this algorithm is O( |F| ( |S| ). 

Question 4

Let S = (ABCDE), F = { A ( B, BC ( D, DE ( B }, ( = { ACD, ACE, BDE }.

This decomposition is lossless because:


A
B
C
D

b14
E

ACD
a1
b12
a3
a4
b15

ACE
a1
b22
a3
b24
a5

BDE
b31
a2
b33
a4
a5

     By activating A ( B we assign v22 = v12 = b12:


A
B
C
D

b14
E

ACD
a1
b12
a3
a4
b15

ACE
a1
b22
a3
b24
a5

BDE
b31
a2
b33
a4
a5

     By activating BC ( D we assign v24 = v14 = a4:


A
B
C
D

b14
E

ACD
a1
b12
a3
a4
b15

ACE
a1
b22
a3
a4
a5

BDE
b31
a2
b33
a4
a5

     By activating DE ( B we assign v22 = v32 = a2:


A
B
C
D

b14
E

ACD
a1
b12
a3
a4
b15

ACE
a1
a2
a3
a4
a5

BDE
b31
a2
b33
a4
a5

     Now the second line contains only ‘ai’, therefore the decomposition is lossless.

If we don’t allow copying ‘bij’ between lines in the algorithm, then in this example we couldn’t have done anything from the initial tables (because in the initial table, there are no two lines that are equal at BC or DE). Therefore, the algorithm without copying ‘bij’ would have returned that this decomposition is lossy – which is not true. Copying ‘bij’ is necessary to ensure the correctness of the algorithm.

Question 5

1. True. X ( Y is a private case of X (( Y where the size of the sets that the multivalued dependency enforces is always 1.

2. True. Let X (( Y and Z = S – XY, then for each z (an instance of Z) every x (instance of X) determines a set y1, …, yn of Y’s. But this also implies that for every yi, every xi will appear exactly with the entire set of z’s that is in the table. This by definition means that X (( Z = S – XY.

3. False. An example: S = (ABCD), D = { A (( BC, BC (( B }. This tables satisfies D but demonstrates that A (( B is not true:
R = { (1,a,b,1), (1,c,d,1), (1,a,b,2), (1,c,d,2) }

