
Governance of an Agile Software Project 
 

 

David Talby 

Hebrew University of Jerusalem 

davidt@cs.huji.ac.il 

Yael Dubinsky 

IBM Haifa Research Lab 

dubinsky@il.ibm.com 

 

Abstract 
 

Effective governance of agile software teams is 

challenging but required to enable wide adoption of 

agile methodologies, in particular for large-scale 

projects. In this paper we apply a full lifecycle 

governance model to agile projects, focused on the 

iteration level. The concept is demonstrated via a case 

study of a large-scale, enterprise-critical software 

project that implemented agile practices. We analyze 

three governance events, including the metrics that 

triggered the event, the decisions taken and the follow-

up to ensure resolution. We conclude that governance 

iterations can be naturally unified with agile 

development iterations, resulting in a lean governance 

mechanism that identifies and resolves issues in an 

effective and timely manner. 

 
1. Introduction 
 

One of the prevailing points of criticism against 

agile software development is that it leaves little place 

for external oversight of projects. The Whole Team 

practice [1] short-circuits common communication 

barriers by putting the customer, developers, business 

analysts and testers all in the same room and team.  The 

team is then empowered to decide what to deliver and 

even how to adjust its development process over time 

using a retrospective practice [11]. This changes the 

traditional roles of project and program managers, by 

making some of the communication and coordination 

aspects of these roles redundant. 

Senior managers and program managers usually 

supervise multiple projects simultaneously, cannot dive 

into the details of each project, but are still expected to 

keep all projects on track by identifying and resolving 

alarming issues as they occur. Providing effective 

governance mechanisms that enable them to monitor 

projects effectively is thus a key success factor for the 

adoption of agile methodologies and the realization of 

their business value. This is particularly critical in 

large-scale software projects that are not released to 

end users in short time intervals, regardless of being 

developed in short iterations. 

Successful large-scale agile software development 

must therefore reconcile agile principles – including 

whole, self-organizing teams – with enabling proper 

governance, which in the scope of this paper involves 

answering the following questions: 

 How do we know on an on-going basis that an 

agile project is on track, and effectively identify 

and resolve alarms? 

 How do we know if and to what extent the agile 

practices improve the software development 

productivity and quality of a given team? 

This work presents an application of a recently 

proposed full-lifecycle model of software project 

governance [7] to agile projects. The subject of 

research is a large-scale software project developed by 

the Israeli Air Force [12]. Our data comprises of 

quantitative and qualitative data, from interviews and 

questionnaires assessing current state and goals at the 

outset, through to metrics collected by the team. 

Focusing on the level of the single iteration, we show 

that agile practices can be implemented in a way that 

naturally incorporates the full governance lifecycle. 

This paper is organized as follows. Section 2 

provides background of software project governance, 

and describes its key stages in an agile context. Section 

3 presents a case study for which we describe the 

governance of one agile team using metrics that were 

designed for that project. The data was collected in its 

first three releases (12 iterations). Moreover, data from 

the retrospective process was used in order to add the 

team‟s perspective. In Section 4 we analyze the case 

study through the roles and responsibilities that were 

involved. In Section 5 we conclude. 
 

2. Governance of Software Development in 

an Agile Environment  
 

Governance of software development is a relatively 

new and evolving field [3,5,8,9] that in a sense has 

emerged from the IT governance arena [2,4,13,15]. 



Governance in general is defined by the Webster 

dictionary as exercise of authority, control, and 

arrangement [14]. This definition relates well to top-

down „command and control‟ situations that are 

common in traditional organizations. In the last decade, 

the agile approach to software development [1,10,11] 

promotes the use of self-managed teams, thus enabling 

the exploration of software development governance 

and its effectiveness in bottom-up „empower and 

reflect‟ situations [8]. 

Given a specific software project, governance of 

software development is an iterative process concerned 

with the project goals and how they are expressed in 

the decisions made by the different roles involved with 

the project. Such decisions are based on policies that 

are defined and metrics that are collected accordingly. 

Using the metrics data gathered, role holders can 

participate in decision making as per their decision 

rights. Adjusting the governance iterations to the short 

development iterations enables on-going reflection on 

the governance events – events that highlight key issues 

in development, and how governance mechanisms such 

as policies and metrics assist relevant roles in making 

decisions to solve and follow up on these issues. 

An agile iteration, in all major agile methodologies 

consists of these main parts [1,10]: 

 Planning session – the project team listens to the 

customer‟s requirements that are prioritized for 

this iteration and distribute the development tasks 

that are derived from a high level design among 

teammates. The development tasks are estimated 

to assess the iteration scope. 

 Development days – the project team works to 

complete the committed tasks. During this time a 

re-planning session may occur in case there is a 

need to change the iteration scope – for example 

defects that should be fixed during the current 

iteration, or wrong estimates that lead to 

reprioritization of customer requirements.  

 Presentation and feedback – the project team 

presents the customer with the developed features 

of the iteration. Metrics are also presented – the 

most common are ones that relate to team velocity 

and progress. 

 Reflection session – the project team reflects on 

the ending iteration and decides on action items to 

improve accordingly. Reflection can relate to 

technical, social or organizational issues. 

Each iteration is part of a complete release, so each 

reflection session is typically immediately followed by 

the next iteration‟s planning session. 

It is a natural “lean” idea to implement governance 

of an agile software project by unifying the agile 

iterations and the project‟s governance iterations. The 

definition stage of the governance lifecycle happens first 

before development begins, when the team first decides 

on its work procedures and metrics. The activation 

stage happens during the development days, in which 

work is done and metrics are captured. The assessment 

stage happens in the presentation and reflection 

sessions, with the reflection having the formal role of 

being the definition stage for the following iteration. 

In the scope of this paper we do not address 

governance across releases. Governance at the iteration 

level has two goals: 

 Ensure alignment with the iteration goals: The 

level of governance abstraction is low and is 

focused on the current development iteration that is 

2-3 weeks long. 

 Effectiveness for a specific team and problem: 

Effective governance must deal with current, 

relevant issues in order to show improvement in the 

short term – the very next iteration. Key traits are 

flexibility and appropriateness. 

 

3. Case Study: Governance of an Agile Project 
 

The software project under research in this paper is 

a large-scale, enterprise-critical system, intended to be 

used by a large and varied user population. The project 

was developed within the Israeli Air Force for internal 

use. In the first release the team had a coach and 15 

members, out of whom 7 were full-time developers and 

8 were business analysts, architects, developers and 

testers who devoted between 30-60% of their time to 

the project. By the third release the project team grew 

to 15 full time members. 

In what follows based on a brief description of the 

definition stage of the governance of this project, we 

present three specific governance events. They show 

how data that is gathered by governance mechanisms 

can be regularly assessed after each iteration, affecting 

the team‟s behavior right afterwards. 

  

3.1. The Governance Definition Stage 
 

The decision to use Extreme Programming (XP) as 

this project‟s development methodology was the result 

of a one-year effort – meant to change the established 

waterfall development process in order to enable more 

rapid response to customers‟ requests, required changes 

and new requirements. Following training, a workshop 

and a pilot, this was the first large-scale agile project to 

launch, and while upper management fully supported 

the change, it was considered risky and thus closely 

supervised. 



XP practices contradicted many of the existing work 

procedures and templates used in the organization, and 

so the team was given a waiver on most of the existing 

regulations. However, this required the team to 

establish a strong governance framework: it was 

allowed to design its own work processes, as long as it 

could show management that the project is managed – 

effectively run and under control. The team‟s success 

to do so not only enabled better external oversight, but 

also addressed the challenge of internal governance – 

helping the team members make the switch to the agile 

practices and way of thinking. 

In addition to establishing a planning, development, 

presentation, feedback and reflection cycle as described 

in the previous section, the project‟s leadership defined 

a set of metrics [6,12]. The formal role of tracker was 

established in the team, as responsible for the quality 

and continuity of measurement. Metrics were presented 

to the customer as an integral part of each iteration‟s 

summary meeting. 

Since the metrics – whose details are elaborated in 

the next section – were designed for the iteration level 

and for the needs of this specific team, they achieved 

multiple governance goals. First, they ensured external 

observers that the project was making good progress 

and that key risks were under control. Second, it 

educated team members on what aspects of their day-

to-day behavior were deemed most critical to focus and 

improve on. And third, it enabled data-driven decision 

making, making that stage of the governance lifecycle 

easier for a new, diverse team. 

 

3.2. Governance Events 
 

We present three events in which an alarm was 

triggered and resolved by the project‟s governance 

mechanisms defined above. Each event demonstrates 

one of the core metrics that were used to track healthy 

progress. In each event: 

 The alarm was raised during the iteration summary 

meeting when metrics are reviewed. 

 Action items to resolve the issue were discussed 

and decided at that iteration‟s reflection meeting. 

 The next iteration‟s summary meeting two weeks 

later is used to verify that the issue is resolved, and 

find out what needs to be addressed next. 

 

Event I: Re-plan the release scope 

Burn down is a well-known metric used to measure a 

team‟s progress towards commitments made to the 

customer during the planning stage. In the project 

under research the risk that this metric addressed was 

that the team would get bogged down in perfecting 

minor features – adding more complexity and 

increasing the product size, at the expense of other 

major requirements. 

To address this, the project was divided into two-

month-long releases – a variant on the XP quarterly 

planning practice. Each release began by allocating 

resources to it, and then planning the deliverables for 

that release based on a high-level estimate of how 

much effort each one would take. The sums of 

estimated remaining work and remaining resources 

define the starting point of the release‟s burn down 

chart – see for example week 0 in Figure 1, which 

shows the project‟s burn down for the first release. 

Once the release planning is done, the plan becomes 

a commitment to the customer. It is also used to 

coordinate with other teams – for example, state that 

the project will be ready for integration in two months‟ 

time. Therefore, when remaining work does not shrink 

at the same rate as remaining resources – as happened 

for example at the end of the second iteration (week 4 

in Figure 1) – an alarm was raised. 

 

 

Figure 1: Burn down by week in the first release 

 

Such a growing gap in a burn down chart can mean 

that the team is not delivering as fast as expected, or 

that there was a significant estimation error when a 

commitment for the release was made. In the case of 

the second iteration, it was a combination of both: The 

four week old team was still evolving the development 

and build environments, and inefficiencies still existed; 

on the other hand, some of the high-level commitments 

which were assumed (and estimated) as simple 

experienced feature creep during the release. 

These facts were uncovered during the iteration 

summary meeting in which the customer was present. 

The discussion and reflection that followed resulted in 

two decisions: One was to reach for the help of senior 

engineers from other projects about the development 

environment and continuous build system, and the 

second was to reevaluate some of the new feature 



requests with the customer to make sure that the team is 

not realizing the risk of perfecting minor features. 

As the burn down chart shows, these combined 

actions had the impact of reducing the remaining work 

to within the available resources within two weeks. 

This was reviewed by the team at the summary meeting 

of the third iteration, at the end of week 6. 

 

Event II: Extend testing resources 

The pulse metric was designed to monitor the risk of 

people sticking to their “pre-agile” habits of coding on 

a private branch and integrating with the rest of the 

team only late and when a delivery is due. 

The practice of continuous integration means that in 

addition to maintaining a continuous build, the 

developers check in code into the shared integration 

environment at least once per day. Since this was a 

change in personal work habits for a majority of the 

team, the number of check-ins per days into the 

integration branch – defined as the pulse metric – was 

measured and discussed in each iteration summary. 

The team‟s goal was to maintain a healthy, steady 

pulse – checking in regularly during the iteration, in 

contrast to having quiet periods followed by a surge of 

integration efforts towards the end of the iteration. 

Figure 2 shows the pulse metric on a daily basis 

during the third iteration of the first release. While the 

pulse for software code is reasonable, an alarm was 

raised regarding the automated acceptance tests. 

Basically, one person was writing acceptance tests in 

the team, and was doing the majority of that work in 

the last two work days of the iteration, with check-ins 

happening on the very last day. In this case, that person 

raised an alarm even before the metrics were viewed – 

after working over the weekend still not all new code 

was tested, and even if it were such a work style was 

not sustainable. 

This urgent issue triggered the project‟s governance 

mechanism – after the metrics were viewed in the 

morning, this was chosen as the subject of that 

afternoon‟s reflection meeting. In this case the team 

decided to fight for more testers to be available to it, 

train some of the developers to write acceptance tests, 

and allocate tasks in the next iteration to complete the 

testing of the new features which were not yet fully 

tested. These tasks received priority not only by the 

team but also by the customer, who is present when 

metrics are discussed and shares the interest of 

maintaining a fully tested code base, especially when 

the project is young. 

 

 

Figure 2: Pulse metric, daily in the third iteration 

 

Figure 2 does not show the problem being solved in 

the following iteration. To see this we can look at 

Figure 3 that is explained as part of event III and 

presents the product size metric. After the minor 

increase in product size in iteration 1.3 there is a major 

leap in 1.4, which is the cumulative result of catching 

up on the missing 1.3 tests plus new fully tested 

features that are developed in 1.4. 

 

Event III: Insist on delivery every iteration 

The product size metric was designed to monitor the 

risk of not producing a customer-ready deliverable at 

the end of every iteration. Up to this project, the 

standard in the development organization was that new 

projects took months before delivering the first 

customer-facing features – and even then, those were 

“code complete” and not fully tested and ready for 

delivery. 

Therefore, it was decided that the key velocity 

metric measuring the team‟s progress will not be in 

story points, work days or lines of code – and instead 

be based on the size of the automated acceptance tests 

suite. This was measured by the number of test steps 

that passed an automated test run on the integrated 

code base. This metric was intended to send several 

messages to the project team: Only tested features 

count, only customer facing features count, and only 

integrated code counts. When the project started, one 

professional tester was assigned to it, and the team‟s 

main goal for the first iteration was to deliver a greater 

than zero product size. 

Figure 3 shows the product size metric over the first 

three releases. This metric raised an alarm once during 

the project: in iteration 2.3, the only one in which the 

metric declined compared to the previous iteration. 

 



 

Figure 3: Product size metric across three releases 

 

This was the obvious subject for the reflection 

meeting at the end of iteration 2.3 – a team‟s inability 

to deliver more value to its customer every iteration is a 

severe issue. The reason for this decline was the team‟s 

dependency on one high performing tester, who over 

time took it upon herself to write, maintain and run a 

majority of the team‟s acceptance tests. In the middle 

of iteration 2.3, this person was reallocated to help with 

an emergency in another project. At that point the team 

had less than a week – in which they had other 

committed work – to find a solution to this problem, 

which didn‟t happen until the iteration ended. 

That reflection meeting focused on discussing ways 

to remove the team‟s dependency on that one tester in 

order to deliver. Developers and business analysts 

committed to write, maintain and run acceptance tests 

on their own. One person was appointed to distribute 

this workload and tackle roadblocks. The team decided 

to invest in getting trained on writing and running tests.  

As Figure 3 shows, in the following iteration the 

product size was once again up, surpassing iteration 

2.2. From that point on the team regained its velocity 

and continued a steady increase in product size. 

Towards the end of the third release another tester 

was allocated to the team on a full time basis. At that 

point the team members still chose to do some testing 

on their own and train new developers on acceptance 

testing, to prevent recreating a dependency on one 

person to achieve the team‟s goals. 

 

4. Role and Responsibilities  
 

The role scheme and the responsibilities of each role 

holder differ among teams and organizations. Roles 

and responsibilities are continuously used and 

sometimes shaped according to governance events that 

occur. In this part we relate to the roles and 

responsibilities that were involved in the three 

governance events described in Section 3. Using this 

perspective enables a closer look at decisions that are 

made as part of the development process and the 

decision rights that are used.  

In Event I, two decisions were made with respect to 

the release scope of requirements. The first decision is 

to add more role holders – experts from other projects 

– to serve as consultants. This means that role holders 

who are responsible remain, and can still be consulted 

in addition to the new role holders who do not have 

direct responsibility. The second decision was to re-

plan the release scope. This was done by the business 

analysts and team leaders together with the customer 

who was accountable for the release requirements.  

In Event II, the decision was to increase the 

resources available for developing automated 

acceptance tests. Before this decision was made, the 

main tester was solely responsible to develop and run 

the complete set of acceptance tests. After this event, 

developers were assigned to write tests and were 

responsible to develop and run them.  

In Event III, it was discovered that the decision 

made in Event II was not enough. Although more 

people developed and ran tests, they did not take full 

responsibility for the entire set of tests, in particular 

those that were maintained by the main tester. So it 

happened that when that tester was urgently asked to 

help in another project, the tests were not maintained 

and run and this resulted in a poor delivery. The 

decision therefore strengthened the previous one by 

specifically emphasizing collective responsibility to 

maintain and run the tests before the end of each 

iteration, in order to deliver a high quality product on 

time, every time. Making this decision increased the 

commitment of the other team members and eliminated 

the dependency on the tester. 

  
5. Summary 

 
This paper presents a case study on governing an 

agile project. We relate to the different governance 

stages and mechanisms, including an examination of 

the roles and responsibilities that are involved. 

We found that governance is tight and effective 

when performed at the level of each development 

iteration. The governance mechanisms are used to steer 

the development process and increase the quality of the 

developed product. In addition, we found that 

governance events can shape the responsibilities of role 

holders and hence improve the role scheme in use. 

In this paper we examine governance at the level of 

single iterations. In future work we intend to analyze 

governance at the release and full project level. This 

would require looking at a longer time scale and at 

release- and project-level metrics and events. 



6. References 
 
[1] Beck, K. & Andres, C. (2004). Extreme programming 

explained: second edition. Boston, Massachusetts: 

Addison-Wesley. 

[2] Broadbent, M. (1998). Leading governance, business 

and IT processes: the organizational fabric of business 

and IT partnership, Findings Gartner Group, 31 

December 1998, document #FIND-19981231-01. 

[3] Cantor, M. & Sanders, J. (2007). Operational IT 

Governance. Retrieved from: 

http://www.ibm.com/developerworks/rational/library/ 

may07/cantor_sanders/index.html 

[4] Chulani, S., Williams, C., Yaeli A., Wegman M. N., & 

Cantor M. (2006). Understanding IT governance: 

definitions, contexts, and concerns (Research Report 

RC24064). IBM. Retrieved from: 

http://domino.research.ibm.com/library/cyberdig.nsf/ 

papers/38905EEA124CDDFB852571FE00569CCE/ 

$File/rc24064.pdf  

[5] Dahlberg T. & Kivijärvi H. (2006). An integrated 

framework for IT governance and the development and 

validation of an assessment instrument. Paper 

presented at the 39th Hawaii International Conference 

on Systems Sciences, Kauai, Hawaii. 

[6] Dubinsky Y., Talby D., Hazzan O. & Keren A. (2005). 

Agile Metrics at the Israeli Air Force. Agile 2005 

Conference, Denver, Colorado. 

[7] Dubinsky, Y., Hazzan, O., Talby D., and Keren A. 

(2007) Transition to Agile Software Development in a 

Large-Scale Project: A System Analysis and Design 

Perspective, in the Advances in Management 

Information Systems (AMIS) Monograph Series, 

AMIS Systems Analysis and Design (SA&D)  

volume 1, chapter 5. 

 

 

 

 
[8] Dubinsky, Y., Yaeli, A., Feldman, Y., Zarpas, E., and 

Nechushtai, G. (2008) Governance of Software 

Development: The Transition to Agile Scenario, IT 

Governance and Service Management Frameworks 

and Adaptations, Idea Group Publishing, Information 

Science Publishing, IRM Press. 

[9] Ericsson, M. (2007). The governance landscape: 

steering and measuring development organizations to 

align with business strategy. Retrieved from: 

http://www.ibm.com/developerworks/rational/library/ 

feb07/ericsson/  

[10] Hazzan, O. and Dubinsky, Y., (2008). Agile Software 

Engineering, Springer-Verlag London Ltd. 

[11] Highsmith, J. (2002). Agile software development 

ecosystems. Boston, Massachusetts: Addison-Wesley. 

[12] Talby, D., Hazzan, O., Dubinsky, Y. and Keren, A. 

(2006) Agile software testing in a large-scale project, 

IEEE Software, Special Issue on Software Testing, pp. 

30-37. 

[13] Van Grembergen W. & De Haes S, (2004). IT 

governance and its mechanisms. Information Systems 

Control Journal, 1. Retrieved from: 

http://www.isaca.org/Template.cfm?Section=Home& 

Template=/ContentManagement/ContentDisplay.cfm&

ContentID=16771 

[14] Webster's Revised Unabridged Dictionary (1913). 

Edited by Noah Porter. 

[15] Weill P. & Ross, J.W. (2004). IT governance. Watertown, 

Massachusetts: Harvard Business School Press.  

 

 

 

 

 
 

 


