
A Process-Complete Automatic Acceptance Testing Framework

David Talby, Ori Nakar, Noam Shmueli, Eli Margolin, Arie Keren
Mamdas – Israeli Air Force
Email: davidt@cs.huji.ac.il

Abstract

We present a new automated software acceptance
tests framework. The framework is novel in supporting
the entire lifecycle and all QA activities, including test
maintenance over multiple versions, interaction with
programmers and business analysts, traceability to
specifications, multi-user test cases and more. This
enables a significant increate in QA productivity and
product quality. We compare our framework to other
available tools, products and frameworks, and present
several patterns and anti-patterns for implementing a
successful automated acceptance testing solution.

1. Introduction

An acceptance test is a formal test conducted to
determine whether or not a system satisfies its
acceptance criteria – from a user's point of view – and
to enable the customer to determine whether or not to
accept the system [17]. In an Extreme Programming
project, the acceptance tests are written and owned by
the customer. In conventional developments
methodologies, these tests are usually written by the
project's QA team.

Acceptance tests contribute three things to a
software project [11]. First, they capture the system's
requirements in a directly verifiable way. As one study
[8] shows, typical requirement specifications are 15%
complete and 7% correct. There is strong indication
that exhaustive requirements specifications are
impossible. And even if they were possible, the only
way to verify them would be to translate them into test
cases. Acceptance tests address both of these issues:
they can grow as the system grows, and they capture
requirements in a directly verifiable way – if the test
passes, the requirement it documents works.

Second, acceptance tests expose problems that other
type of technically-oriented tests miss. As described in
[3], acceptance tests capture many bugs that unit tests
don't, even if the unit tests provide full code coverage.

Stress tests and system integration tests also do not
target the type of end-to-end functionality that
acceptance tests do.

Third, acceptance tests provide a ready-made
definition of how "done" the system is. A system is
deliverable exactly when it passes all its acceptance
tests, so the percentage of such tests that pass is the
only practical definition of real progress. No other
measure – percentage of code written, invested time,
used resources and so on – makes sense as a bottom-
line indicator of completeness.

For the above reasons, most software development
projects have some procedure for acceptance testing,
sometimes the responsibility of specialized QA teams.
Whoever fulfills the QA role in the project receives the
software when it is feature-complete, run the
acceptance tests, and report errors back to the
developers. The ongoing responsibilities of the QA role
also include writing acceptance tests (which requires
close interaction with business analysts), helping
developers track down bugs, and maintaining
acceptance tests as the software evolves.

Automation of QA activities is highly desirable for
two reasons. First, many of the tasks are mundane –
such as filling forms and validating their results – and
highly repetitive – since all edge cases should be tested.
Second, running all acceptance tests is a bottleneck
before product delivery, and can take weeks for a
medium-size project. This affects both the time
required to find all bugs, and creates an overwhelming
overhead for each delivery. This is why agile software
methodologies often consider automated acceptance
tests a must-have [1, 2]. Automated tests can also be
run more often and earlier in the development process,
thereby improving product quality [11,12].

A large variety of tools, frameworks, products and
techniques for automating acceptance tests is available.
However, there is mounting evidence that developing
your own solution is often the more effective option,
and that this is not as daunting a task as it seems at
first [9,12]. Most of them are focused on writing the

tests in a formal yet user-friendly language, running the
tests in a configurable manner, and providing useful
reports of the results [4, 5, 6, 10]. This gives a solution
for the pre-delivery bottleneck, but not for the many
other QA activities in a software project, which may
take well over half of the time of QA personnel:
� Interacting with developers to reproduce bugs
� Interacting with business analysts to understand

detailed requirements, to ensure full coverage
� Deciding whether a failed test is caused by a bug in

the test or in the product
� Deciding if a failed test is a new or known bug
� Tracking coverage and traceability to specifications
� Finding which tests need to be changed, when the

requirements of a new version/milestone of the
product is written (Impact Analysis)

� Managing multiple concurrent versions of test
suites, for multiple versions of the tested product

� Defining and maintaining common portions of test
scenarios (edge cases, setup, etc.)
This paper presents a new framework that builds on

known best practices, but takes a leap forward, and
deals with the entire set of QA activities and
responsibilities. The end result positively affects all of
the above tasks. Moreover, the framework is being
used in a real-world, large-scale enterprise information
system project. Both the framework and the
development process that it implements have been
"forged by fire" in real use, over a considerable amount
and scope of written acceptance tests.

This paper is structured as follows. The next section
describes the setting of the tested project. The next two
sections describe the framework's tools for writing
tests, and for running them. Section 5 describes "tricks
of the trade" – solutions we implemented for common
acceptance-automation problems. The final section
summarizes our insights and advice – for building your
own automated acceptance testing solution.

2. The Setting

2.1. The Testing Environment

The tested product is a large enterprise information
system. The system has several hundred forms and
tables, each with its own set of fields, actions and
transactions. The system also has several dozen user
types, each with its own permission rules, and
numerous on-line interfaces to other systems.

There are two preconditions to building any
automated acceptance testing solution. The first is the
existence of a small, common set of metaphors that
describes the system's UI. This enables us to express all

kinds of user actions on the system using a relatively
small number of verbs [7,11]. In our case, the system is
built on top of an in-house object-oriented framework,
which handles all the technical aspects of the web and
application server layers, as well as providing a
standard user interface. The UI framework is based on
standard metaphors such as "Window", "Selection",
"Action" and so forth.

The second precondition to an automated
acceptance test solution is a tool that manages the
system's specifications, and allows querying them.
Otherwise – for example if specifications are described
in free-text documents – it is obviously impossible to
track traceability, coverage, find specific changes
between versions, or determine whether a failed test is
caused by a bug or by a miss-match between the test
and its specification. To enable automation, it is also
important that the specifications tool provide an API
for other programs (not just humans) to query it. We
solved this problem by using the same tool as both the
specifications and the tests repository.

The entire system's detailed functional specifications
– data entities, forms, tables, actions, permissions and
so forth – are written by the business analysts in a tool
called the metadata repository [16]. This is a highly
configurable tool, which in essence enables the
definition of document schemas, and then the editing of
documents of these schemas. The documents
themselves are stored as XML files on the file system,
which is vital because it enables managing the detailed
functional specifications using the same configuration
control tool used for storing source code.

The metadata repository is a bridge between
business analysts and programmers. On one hand, it has
a visual editor for business analysts to edit their work,
using their own vocabulary; for example, they define an
"Entity", and not database tables, application server
services or classes. On the other hand, it has a template
language and generator, used to automatically generate
source code files, database and server initialization
scripts, form layouts, reports and so on. The detailed
specifications which are formal enough are generated
into code directly, while the more complicated business
logic has to be manually coded.

For a complete description of our metadata
repository, see [16]. For the purpose of this paper, it
suffices to know these three of its prominent features:
� Can create arbitrary document schemas, and edit

documents of these schemas
� Stores each document in a file, rather than a database
� Has a built-in concept of hyperlink between

documents, and supports a query of all hyperlinks
from or to a given document

2.2. The Testing Process

The testing process for each milestone of the project
is sketched in figure 1.

The test framework presented in this paper was not
planned in advance – in fact, when the project began
two highly acclaimed commercial products for software
testing were purchased (for example see products such
as [13, 14]). One was used as the tests repository – it
enables a tester to write and organize free-text tests,
and to record the results of running manual tests. The
other tool was used to write and execute automatic
tests; we did not use the tool's recording capabilities,
because of the maintenance costs of such tests when the
UI changes, but instead used its scripting language to
translate tests from the other tool (which were written
there in readable non-technical form) to scripts that the
tool could automatically run.

The process was as follows. When specifications for
a new version were done, the QA team started to write
tests for them. When the new version was ready, each
new test was run manually – to validate the test itself.
For the next version, it was automated by having a QA
team member manually create a script to run it in the
automated test execution tool. The effort of translating
tests to scripts was very high; many tests were not
automated. This raised the resources required to run
manual tests, which kept growing each version. Also,
tests on volatile entities or data were not translated to
scripts, to reduce to expected maintenance cost of these
scripts – but this created the paradoxical situation in
which the most error-prone portions of the software
were the least tested. The costs involved were so high
that they justified developing a new solution, tossing
the bought tools aside, and converting the existing tests
to the new solution. The next section describes how we
chose that solution.

3. Writing Acceptance Tests

3.1. Linking Test Cases to Specifications

Tools such as [13,14] provide an orderly way for a
team of testers to write and organize a large database of
test cases. At the single test level, each test is
composed of a list of steps – the atomic execution unit
that can either pass or fail. The difference between
these tools and automated acceptance tests frameworks
such as FIT [5], FAT [4] and JAccept [10], is the
formalization of tests. Instead of a free-text description
saying "Write 999 in the amount field and hit 'Save'",
we'll define:

Step Type Parameter 1 Parameter 2
Edit Field Amount 999
Do Action Save

The key is that such a format is still readable, but

formal enough to be automatically executed. Each step
starts with selecting a step type (Edit Field, Do Action,
etc.) – a predefined list selected from a combo box –
and adds parameters to that step type. In our case, four
parameters were sufficient for all step types.

There are two patterns proposed in [7] for designing
the editor and test language, which we embrace and
pass on:
� Provide a simple, high-level domain language.

Avoid inventing a new programming language –
expressions, conditions and loops are not required
and will make the tests unreadable. use high-level
verbs such as "Open Form - Customer" instead of
low-level ones like "Call Session Bean - http://...".

� Provide a visual test editor. Testers and business
analysts will resist working inside an IDE or an
XML editor. They need a tool that lets them write
fast, navigate and view tests in a readable fashion,
and ignore low-level issues.

Feedback

Write
Detailed

Specifications

Write
Test Cases

Implement
(Write Code)

Run Tests

Figure 1: Testing Process

However, all the existing tools that we found lack
one important feature – linking the tests to the
specifications. The problem is that field names, action
names, form names, error messages and so forth must
be entered into the tool manually by the tester – and
even one spelling mistake is enough to cause the test to
fail. This requires the testers to be slower and more
careful, and also lengthens the test execution phase
since most failed tests will be caused by a bug in the
test rather than in the system.

We have solved this problem by using the metadata
repository as the tests repository. We defined a new
document schema named "Subject Testing", which
contains a list of tests for a given category; each test is
a list of steps as usual. We then used the scripting
capabilities of the repository, to implement combo-
boxes and auto-completion for all relevant step types
and parameters. This is done by using the repository's
API to query the detailed specifications, also stored
within it. Consider the following example:

Step Type Paramater 1 Parameter 2
Open Form Account
Edit Field Customer John Doe
Check Field Amount 0.0
Edit Field Amount -1000.0
Check Action Withdraw Enabled
Do Action Request Loan
Confirm
Message

"Cannot loan
on overdraft"

Do Action Save
Check Action Save Disabled

Figure 2: Test Case Example

In this test case, all values except for the numeric
amounts and customer name can be selected from
combo-boxes or auto-completion boxes. This
dramatically increases tester productivity. Another
worthy addition was usability improvements that
allowed writing multiple steps using the keyboard
alone, making test writing more fluent. Values can also
be verified as-you-type, decreasing the number of
errors in test cases.

3.2. Automated Queries

Another important outcome of linking the test cases
to the specifications is the ability to trace the link.
Since we know precisely where action names (for
example) are used in test cases, and where they are
defined in the specifications, we can write automated
queries that answer questions such as these:

� Which actions are never used in any test case?
(Coverage report)

� Which tests use actions that don't exist?
(Finding reason for failed steps; Finding tests that
need to change when specifications change)

� Which tests will have to change if the specification
of action X changes? (Impact Analysis)

� Which actions have defined business logic for when
they are enabled, but there is no test step that
checks whether that action is enabled or disabled?
(Detailed coverage analysis)
As you can see, we can go into great detail in our

queries, and automate many of the most difficult tasks
in managing a large suite of test cases. Writing these
queries uses the query language of the tool you use –
we use the language that our metadata repository
provides. In your solution, that language may be SQL
or VBA or some scripting language.

Using the same tool for both specifications and test
cases is one of the strongest points of our solution, and
is highly recommended. However, you can use any tool
– even Excel for example – for writing tests, as long as
you invest the time to implement combo-boxes and
auto-completion for test steps, and relevant queries and
reports for the type of questions presented above.

4. Running Acceptance Tests

4.1. Architecture

The main benefit from an automated test solution
comes when the product is ready to be tested. Then, as
fast as possible, all tests must be run, and every failed
step must be categorized as a new bug, known bug, or
mistake in the test case.

Architecting an automated tests framework requires
making three decisions:
1. Are tests cases generated to code first, or executed

using an interpreter?
2. What is the protocol to execute steps on the tested

application?
3. Where are execution results stored, and how are

they reported?
Regarding the first question, some of the

commercial tools we reviewed require translating test
cases into code-style scripts before execution. The
better approach, taken by the majority of newer
frameworks, is to build an interpreter which translates
the test steps into operations on the tested application.
This saves the time of the code generation, and enables
making minor changes to the test cases on-the-fly. The
performance penalty of interpreting the tests is
negligible in most kinds of tested projects.

Regarding the second question, there are significant
changes between different tools. Some frameworks rely
on reflection: Each step type is associated with a class
and method name, and the framework uses reflection to
call the appropriate method with the right parameters.
This requires the tested application to be written in the
same language as the framework and to be started using
the framework. Other tools, particularly ones that
support recording, mimic the operating system. This is
the least-intrusive option, but does not work for every
UI, and is very sensitive to UI change in the tested app.

Our solution is to use a remote socket. The tested
application implements a server socket listening to
some port; the test execution framework opens a TCP
connection to that port to begin execution. The
message protocol is standard XML – each message
contains one step to execute (type and parameters), and
is responded by the step's outcome (success or failure)
and its result (if any). The framework is stateless – each
step's execution is independent.

This solution gives us several unique advantages.
First, the tested application need not use the same
programming language or operating system as the test
framework. Any platform that supports sockets will do.
Second, the tested application and the test framework
can run on different machines. This allows a tester to
run tests on several different installations or
configurations without physically going there, as long
as a LAN or Internet connection is available. And third,
this enables writing a test that runs on multiple
computers. Here is a typical example:

Step Type Paramater 1 Parameter 2
Select Station First Station
Open Form Customer
Edit Field Full Name John Doe
Edit Field Amount 100.0
Do Action Save
Select Station Second Station
Open Query Customers
Select Table
Row

John Doe

Check Field Amount 100.0

Figure 3: Multi-Station Test Case

This is a high-end feature of some commercial tools,

which is very simple to implement using sockets. Since
each step is executed independently, a "Select Station"
step simply tells the framework where to send the next
executed step. A separate configuration file maps
logical station names to IP addresses and ports, to
separate this technical issue from the test case.

The third architectural question to be answered is
where execution results are stored, and how they are
accessed. Existing tools usually store the results in a
database, and provide a set of web reports to view
them. The implied process is that a tester prepares an
execution configuration, runs all automatic tests at
once, and after they are all done reviews the reports.

We took a different approach. In our solution, the
results of running each step are written back to the
metadata repository, to a column in the same test that
includes the executed step. To do this, we exploit the
fact that the API used to query the metadata repository
for tests is read-write. The test results can be written
inside the test document itself – this is the mode used
when running tests in interactive mode – or in another
document that inherits the original one, and contains
only the addition of the results.

In both cases, we enjoy several rewards. First, the
user of the framework need only know one tool – the
visual editor of the metadata repository – for both
writing and analyzing test results. Second, we provide
an equivalent interface for manual and automatic runs –
in manual runs, the tester runs each step and marks
whether it succeeded or failed on the same form. Third,
we can use the metadata repository's powerful query
language to extract reports on test run results. This is in
contrast to the limited configurability of the reports of
some of the existing tools. And fourth, the test results
are stored in files under the same configuration control
rules that are used for all documents, which makes it
easy to record results of past testing cycles.

Step Type Param 1 Param 2 Result
Open Form Customer Passed
Edit Field Full Name John Doe Passed
Edit Field Amount 100.0 Passed
Check Field Amount 100.0 Passed
Do Action Save Failed
Check Action Save Enabled Not Run

Figure 4: Test Execution Results

Figure 4 is an example of how results look from the
framework user's perspective. The above table can be
viewed using the same tool that is used for writing
tests, or for manually executing tests. A step may pass
or fail, and by default the test is stopped after the first
failure, marking the subsequent steps as "Not Run".
Another column that does not appear in the figure is the
"Result Comments" column, which contains a message
describing why the test failed (for example "A
customer called 'John Doe' already exists"). The results
column is useful for manual testing as well.

Figure 5 summarizes the framework's architecture,
which is composed of three modules:
� A plug-in of the metadata repository, which is used

to fill combo-boxes and auto-complete fields, in the
test writing phase.

� Another plug-in of the metadata repository, which
is the interpreter part of the test execution engine. It
opens a socket to the tested application, sends it test
steps, and updates the results back in the repository.
This module has the important role of translating
the human-oriented test definition language to the
code-oriented API of the tested application, thus
keeping these two languages decoupled. This
enables keeping the test language readable and the
app’s API minimal without conflict.

� A module within the tested application, that receives
requests to run steps through a socket, and knows
how to execute all step kinds and report the result.
Some of the code is by nature specific to the tested

application, while other parts are “true framework”.

4.2. Interactive Execution

The synergy of the three architectural decisions we

made enables us to provide the testers with another
unique advantage, namely interactive execution of test
cases from within the visual test editor.

Using the customization capabilities of the metadata
repository, we added to it a menu and a toolbar that
provides commands such as "Run Step", "Run Test"
and a few others that we'll soon explore. To run a test
in interactive mode, the tester need simply start the
application, open the test case in the editor, and hit
"Run Test". All steps will run until the first failed step,
which will become selected. The tester can then inspect
the step's result comments, the state of the application,
and the specifications (which are also edited and
viewed in the same tool), and decide what to do.

If the tester's decision is to change the test case, then

s/he can edit it on the spot, and re-run the failed step.
Since the steps are interpreted for execution, no pre-
processing is required, not even restarting the run.
Since the execution engine is stateless and steps are
sent to the application one at a time, then it doesn't
matter if steps are repeated or run out of order. And
since results are reported right back to the repository,
and so the test writing and running tool is the same, the
tester does the whole process within the same screen.

The interactive mode of test execution – from the
test case editor and not another code/script/report
programmers' IDE – is unique to our framework. It
plays central role in several QA use cases. One is fixing
a test case on-the-fly while it's executed. Another is a
mixed manual-automated execution: A tester can stop
an automatic execution at some step, work manually on
the application (for whatever reason), and return to
running the rest of the test automatically. Another case
is reproducing a bug, on request from a programmer.
This is done by loading the failed test and running it
until at fails. At failure, the tester and programmer can
switch to the application window and examine it.
Sometimes there is a need to stop at steps that pass –
for example, a step passes when it's not supposed to –
and for this we provide both a "Run to Selected Step"
command, and the ability to mark the result of a step as
"Break", which stops execution when it gets to that
step, and so mimics a breakpoint.

4.3. Continuous Testing

In addition to support manual and interactive modes

of test execution, our framework also provides a
command-line interface. This is required for the
important best practice of continuous integration:
Builds of the systems should be conducted often (a
nightly build is the norm), and all automatic acceptance

Socket

Tested Application

App Logic��

Metadata Repository

Metadata

Figure 5: Framework Architecture

Step Execution
Engine

Write Tests
 Plug-in

Run Tests
Plug-in

tests should be run on the result of that build as well.
The rational is simple: automatic tests serve as
regression tests, and we'd like to know that new code
delivered today does not break existing behavior. If it
does, we'd like to know right away, since the time
required to fix the problem is probably the shortest now
– when the responsible programmer has a fresh
memory of the changes that were delivered. Continuous
integration reduces the overall time required to fix
bugs, and reduces the amount of work to do during the
high-pressure pre-delivery period – because some of
the tests have already run and passed.

In our case, implementing continuous testing was
simple, since our metadata repository supports
command-line activation of plug-ins, and since one of
its predefined plug-ins can generate reports defined by
its query language. To define run configurations, we
created another document schema in the repository,
which allows specifying the list and order of tests to
run, and the computers (IP & port numbers) on which
to run them. The test execution plug-in reads a given
configuration and runs all its tests; results are written
back in the repository. The next step is to generate
reports – using the tests and the results data, both of
which are inside the repository. The reports are in
HTML format, and are copied to the network folder
where our web server expects to find them.

Continuous integration is simple to implement, but
difficult to assimilate into a project's development
process. It is often tried and deserted, due to inability to
distinguish between old and new bugs. This happens as
follows: at first, the nightly build succeeds and all tests
pass. Then, as code and tests are added, some of the
tests fail. Not all tests can be fixed on the next day –
this is an important distinction between unit and
acceptance tests [15]. Eventually, no one looks at the
night build results, because many tests fail in it
regularly and nothing should be immediately done
about it (these are known bugs). Sorting out new
failures from the old is too time-consuming to be a
daily activity, and so the project reverts to testing only
before product delivery, when all failures are equally
important.

We have designed a simple mechanism to eliminate
this problem. We have not seen a solution to this issue
in the existing testing frameworks, and strongly
recommend that a mechanism of this type be a part of
any automated testing solution.

The process is as follows. When a new bug is found
– either during interactive execution or a continuous
testing run – a tester opens the failed test case to review
the problem. Sometimes the problem is not a bug
(network failure, etc.) and requires no action;

sometimes it is an error in the test case, in which it can
be corrected on the spot; and sometimes it is a bug in
the application. If (as it the common case) it can't be
fixed immediately, then a new bug should be reported.
However, apart from opening the bug in a separate bug
tracking tool, it must also be written in the test case that
this bug is known, and future runs should be able to
distinguish it. To denote this, the tester simply changes
the result column of this step to "Skip". Optionally, the
result comment column could contain the new bug's ID.
Steps marked with "Skip" will be skipped during
automated execution, and not affect the results. In most
cases skipping a buggy step; in some cases, the
inability to execute a step means that the rest of the test
case can't be run as well, and then the entire test is
skipped.

Therefore, the bottom-line report of a command-line
execution of multiple test cases can look like this:

Measure Result
Executed Test Cases 170
Executed Test Steps 25390
Passed Test Steps 25302
Skipped Test Steps 85
Failed Test Steps 3

Figure 6: Test Run Executive Summary

This means that there are 85 known test steps that
don't work, and three new potential bugs. Note that the
number of skipped tests is not the number of known
bugs (the bug tracking tool has that information), since
several skipped tests may be caused by one bug. But
we do know that failed tests indicate new failures – the
new failed test should be examined the morning after
the night build, and must be either corrected or marked
as skip.

5. Tricks of the Trade

During the actual implementation and assimilation
of the framework, we had to find solutions for several
general problems that appear in acceptance testing.
This section describes them.

5.1. Variables

In some cases, the test needs to use values that the
tested system created during execution – technical
keys, values that depend on date and time, randomly
generated value and so on. For example, each entity
has a technical key, automatically generated the first
time it is saved. Fields that link a data entity to another
entity hold the target entity's technical key. Therefore,

when testing whether a hyperlink is correct, we need to
compare it to the technical key of the expected entity –
which will only be available at runtime.

To handle this, our framework supports defining a
set of variables for each test case. These can be
initialized to a default value, and also modified using a
special "Set Variable" step type. Variables can be used
in test steps anywhere a value can, and they are
identified by surrounding << >> characters. For
example, the following test steps verify that once an
account is linked to a customer, the customer's main
account field also changes to refer to that account:

Step Type Paramater 1 Parameter 2
Open Form Account
Edit Field Customer John Doe
Edit Field Amount 100.0
Do Action Save
Set Variable AccountID ID
Open Form Customer John Doe
Check Field Main Account <<AccountID>>

5.1. Functions: Shared Test Cases

It is very common that a large portion of a test case

be shared with other test cases. This happens when
setting up a test case, or when testing different edge
cases of the same basic use case.

Going back to our customers and accounts example,
assume that we would like to test the transfer customer
to new back use case. This could have dozens of minor
edge cases, depending on open business of the
customer in the source bank, whether it is active or has
a history in the target bank, whether the account types
in the two banks match, and so on. However, all these
tests must start by creating the client and several
accounts in the source bank. This could take from
several steps to several hundred steps, judging from
examples in our own project.

Therefore, it is necessary to support define "function
test cases", and allow "calling" these functions. This is
required so that these shared functions could be written
once and changed once when necessary. To support
this, we defined a new document schema called "Test
Functions"; a document of this schema represents a
"package" of test functions on the same subject. We
also added a "Call Function" step, which allows
parameter passing. The function itself defines each
parameter as a variable (see 5.1), so no special syntax
for defining or using parameters was required.

Step Type Paramater 1 Parameter 2
Call Function Delete Account ID=<<AccountID>>

5.2. Sequences: Dealing with Side Effects

In sharp contrast to unit tests, acceptance tests have

serious side effects, and they cannot be designed to
avoid this [15,12]. Since acceptance tests verify end-to-
end functionality, such tests can – and typically will –
create, modify and delete persistent data.

The problem is magnified by the fact that we must
keep each test case independent. Consider, for
example, a set of test cases that test different edge
cases of customer deletion. All these tests start by
calling the "Create Customer" function, which creates
(in the database) a customer with several accounts. The
tests modify some of these accounts to create different
edge cases, and then delete the account and verify that
the system behaves as required. If "Create Customer" is
naively defined, for example by creating a customer
called "John Doe", then consecutive calls to this
function will fail, because a customer by that name
already exists. A test cannot rely on the fact that the
previous test will delete "John Doe" – that test may
fail, or this test may be run individually or out of order.
We must support side effects on one hand, and
maintain test case independence on the other hand.

The solution we find to this problem is a mechanism
of sequences. In a global document, testers can define a
global list of sequences. Each sequence has a name, a
prefix, and an initial value:

Sequence Name Prefix Initial Value
Customer Name John 1

Sequences are accessed from within test cases using

a variant of the "Set Variable" step type, which in fact
has three parameters: The variable's name, the source
of its new value, and the new value. The second
"source" column may be "Value" (to read a value or
copy another variable), "Field" (to read a field value
from the current form), or "Sequence" – to read the
next unique value from a given sequence. For example:

Step Type Param 1 Param 2 Param 3
Open Form Customer
Set Variable Name Sequence Customer

Name
Edit Field Full

Name
<<Name>>

The "Set Variable" step will return values composed

of the sequence's prefix plus a unique number, i.e.
"John 1", "John 2" and so on. By using these values,
each test is guaranteed to receive a "fresh" customer,
regardless of the execution or results of any other test.

5.3. Computations

In some cases, test steps are defined in terms of

expressions that need to be computed. For example:
� Verify that the customer's amount field is the sum

of the amounts in all of her attached accounts
� Set field "Expiration Time" to be the current time

plus one hour.
� Set field "Requested Loan Amount" to be the value

of the "Amount" field, plus 1.0.
Extending the test definition language to include

expressions (such as additions) and functions (such as
the current time) would greatly complicate the
language, which should not be done for the sake for
relative rare cases. In fact, over-complicating the test
language is a well known anti-pattern [7].

On the other hand, some solution had to be
provided, since the alternative was to require such tests
to be run manually. The compromise that we finally
reached is as follows: The "Set Variable" is extended
to be able to execute a script, and read its result into the
variable. The script language is VBScript, and testers
are not expected to code in it – they request the help of
a programmer when required. This keeps the language
simple, keeps the framework clean and simple, and still
provides a full solution for arbitrary computations:

Step Type Param 1 Param 2 Param 3
Set Variable Value Script result =

var("other") +
1

Since VBScript scripts can access COM objects,

including operating system services, this is also a
solution for some extreme cases in which tests involve
external files, servers or applications outside the
normal scope of the tested application.

5.4. Server Testing

The majority of acceptance tests are implemented

using the application's user interface. This is natural
since they test end-to-end behavior, and not specific
units or modules inside the system. However, there are
two cases in which even an acceptance tests needs to
bypass the user interface and directly activate business
logic at lower levels of the application.

The first is data that is received from external
systems, though a computerized interface. In some
cases, there may not be a user interface inside the
application to change or even create this data. For
example, if the list of disqualified customers is received
from another system, then testers have no way of

creating a new disqualified customer. Doing so requires
coding new steps, which create new database records
for such customers. The general requirement is to
bypass the user interface in three cases: to modify
fields, to create new data, and to activate transactions.

The second case is testing logic that double-checks
client-side logic, for example for security reasons. Such
code should never be reached in normal execution, and
so the only way to test it would be to bypass the
conditions at the client layer, and send the unchecked
data directly to the server. A mechanism to receive the
results must be devised as well.

Note that this problem exists for manual testing as
well. There are two possible solutions: one is to write
code at the client layer, which forwards requests to the
application's server without running the client business
logic code first; another is to implemented the
framework executing engine in the server as well, and
have the framework open a direct socket to the server
and operate on it using the "Select Station" step type.
We have not implemented a solution yet, but our
preliminary design suggests that the first solution will
be simpler to implement and use.

6. Insights

Designing and implementing the acceptance tests
framework was a learning opportunity. In the spirit of
[7], we'd like to summarize patterns and anti-patterns of
a successful acceptance testing solution as we see it.

First, here are the anti-patterns, or "don't do" list:
� Don't create a tool for programmers. This happens

because programmers usually build the automated
acceptance test solution; however, testers and
customers don't edit XML, don't use an IDE, and
don't find writing their own queries amusing.

� Don't use record-and-playback tools. These tools
create non-readable tests, which must be re-done
upon any change to the system's user interface.
They should be used only on strictly legacy systems.

� Don't create a mega-language. The framework is
intended for non-programmers, and most of the test
cases are simple and do not require computations,
conditions, loops, recursion and so on.

� Don't aim to automate 100% of the tests. 80% is
fine – edge cases often won't return the investment.
Here are known patterns that worked well for us:

� Create a high-level domain language. Use simple
verbs, named after the system's main metaphors.

� Design for built-in testability in the application.
Build a framework separates the UI layer from the
data and actions layer, so that actions can be easily
accessed by both the UI and an external engine.

� Add determinism to your application.
� Integrate with build – acceptance tests should be

run as part of the night build. However, such tests
may fail, and this should not break the entire build.

� It's all right to fake it – Not every layer should be
tested as thoroughly. For example, bypassing the UI
framework layer, that has no specific business logic,
is worth the time it saves.
Some of the patterns, such as "Tests are the

Requirements" and "Tests as Conversation Pieces", do
not fit in our environment. This is due to the size of our
project, in which the customer, business analyst and
tester roles are all played by different people. Such
patterns are much more natural in smaller XP teams.

We have also formulated several new patterns,
which we highly recommend for any similar
framework:
� Hyperlink to Specifications. Develop an automated

link to your specifications repository, and provide
as much as possible auto-completion for testing in
writing test steps. This dramatically raises test
writers' productivity, reduces errors in test cases,
and enables automated coverage and impact
analyses on the tests.

� Store tests in files, not a database. This is required
to enable the use of the same configuration control
tool used for the code, for the tests as well. It leads
to a simple definition of a baseline of tests, which
matches a baseline of the product.

� Support Interactive Automated Test Execution. The
interactive mode speeds us the initial automation of
test cases, enables on-the-fly corrections, and helps
programmers reproduce bugs faster.

� Unify tools. In our case, the same metadata
repository was used for editing both specifications
and tests. It was also the same tool for writing and
for running tests. This makes life easier and more
productive both for the framework's users and for
its developers, since many of the underlying aspects
of the framework – hyperlinks, queries, scripting,
configuration control and so forth – behave in the
same way and can be shared.

� Use sequences to deal with side effects. After
considering a multitude of possible solutions,
sequences were the easiest for the testers to use, are
simple to implement, and work well in practice.

7. Conclusion

We have presented our new acceptance testing
framework, which builds on existing best practices, yet
offers several new insights of its own. The major
innovation is supporting the entire range of QA tasks

equally well, using a combination of architecture and
methodology which together lead to a significant
productivity boost to any QA-related role. Since both
tool and process were implemented in a large, real-
world project, we are confident to strongly recommend
the same path for your next acceptance testing solution.

We would like to thank the following people for

their help and sound advice in building the framework
and writing this paper: David Berenthal, Dror Zalika,
Uri Landau, Gil Kulish, Ora Brener and Albert Haroni.

8. References

[1] Beck, K., Extreme Programming Explained: Embrace

Change. Addison-Wesley, 2000.

[2] Beck, K., Test-Driven Development: by Example.
Addison-Wesley, 2002.

[3] Canna, J., "Testing Fun? Really?", IBM
DeveloperWorks Java Zone, 2001.

[4] FAT Acceptance Testing Framework.
http://sourceforge.net/projects/fat/.

[5] FIT Acceptance Testing Framework. http://fit.c2.com

[6] FitNesse Acceptance Tests Framework. http://fitnesse.org

[7] Hanly, S., "Build Your Own Acceptance Test
Framework", Presentation from XP Day 2003.
http:/.xpday.net/scripts/view.pl/Xpday2003/Program.

[8] Highsmith, J., "Adaptive Software Development",
Presentation at OOPSLA 2000.

[9] Hunt, A. and Thomas, D., The Pragmatic Programmer:
From Journeyman to Master. Addison-Wesley, 2000.

[10] JAccept.
http://roywmiller.com/papers/AcceptanceTesting.htm

[11] Kaner, C., James, B. and Pettichord, B., Lessons
Learned in Software Testing, John Wiley & Sons, 2001.

[12] Kanglin Li and Mengqi Wu, Effective Software Test
Automation: Developing an Automated Test Tool.
Sybex, 2004.

[13] Mercury TestDirector, WinRunner and QuickTest Pro.
http://www.mercury.com/us/products/quality-center

[14] Rational TestManager, Robot and other products.
http://www-
360.ibm.com/software/rationa/offerings/tesing.html

[15] Rogers, R., "Acceptance Testing vs. Unit Testing: A
Developer's Perspective", XP/Agile Universe 2004,
LNCS 3134, pp. 22-31, 2004.

[16] Talby, D. et al, "The Design and Implementation of a
Metadata Repository", INCOSE/IL, 2002.

[17] Various Authors. http://c2.com/cgi/wiki?AcceptanceTest

